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ABSTRACT OF DISSERTATION

QUANTILE REGRESSION MODELS OF
ANIMAL HABITAT RELATIONSHIPS
Typically, all factors that limit an organism are not measured and included in

statistical models used to investigate relationships with their environmemntpdftant
unmeasured variables interact multiplicatively with the measured varidties
statistical models often will have heterogeneous response distributions with unequal
variances. Quantile regression is an approach for estimating the conditionakguantil
of a response variable distribution in the linear model, providing a more complete view
of possible causal relationships between variables in ecological processe®r Chapt
introduces quantile regression and discusses the ordering characteristial, mateire,
sampling variation, weighting, and interpretation of estimates for homogeneous and
heterogeneous regression models. Chapter 2 evaluates performance of quantile
rankscore tests used for hypothesis testing and constructing confidence intervals for
linear quantile regression estimates (< 1). A permutatiorf test maintained better
Type | errors than the Chi-squardest for models with smaller, greater number of
parameterp, and more extreme quantiles Both versions of the test required
weighting to maintain correct Type | errors when there was heterogeneity bader t
alternative model. An example application related trout densities to streanetha
width:depth. Chapter 3 evaluates a drop in dispersigatio like permutation test for

hypothesis testing and constructing confidence intervals for linear quantilssiegre



estimates (& T < 1). Chapter 4 simulates from a larféje=10,000) finite population
representing grid areas on a landscape to demonstrate various forms of hidden bias that
might occur when the effect of a measured habitat variable on some animal was
confounded with the effect of another unmeasured variable (spatially and not spatially
structured). Depending on whether interactions of the measured habitat and
unmeasured variable were negative (interference interactions) or positiation
interactions), either uppet £0.5) or lower £ < 0.5) quantile regression parameters

were less biased than mean rate parameters. Samp#id(- 300) simulations
demonstrated that confidence intervals constructed by inverting rankscore tests
provided valid coverage of these biased parameters. Quantile regression was used to
estimate effects of physical habitat resources on a bivalve missdrona liliana

in a New Zealand harbor by modeling the spatial trend surface as a cubic polynomial of

location coordinates.
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Chapter 1

A Gentle Introduction to Quantile Regression for Ecologists

Abstract Typically, all factors that limit an organism are not measured and included in
statistical models used to investigate relationships with their environmemtpdftant
unmeasured variables interact multiplicatively with the measured varidies

statistical models often will have heterogeneous response distributions with unequal
variances. As a consequence, there may be no or weak predictive relationship between
the mean of the response varialyledistribution and the measured environmental
factors. Yet, there may be stronger, useful predictive relationships with ottseeopar

the response variable distribution. Quantile regression is an approach for egtimati
conditional quantiles of a response variable distribution in the linear model, providing a
more complete view of possible causal relationships between variables in edologic
processes. This introduction relates quantile regression to estimates dfgredic
intervals in parametric error distribution models (e.g., least squaressiegjeand
discusses the ordering characteristics, interval nature, sampling variagightimg,

and interpretation of the estimates for homogeneous and heterogeneous regression
models. The motivation is to address the large variation often found in relationships
between ecological variables and the presumed causal factors that is noedttabut
random sampling variation. These models are useful when the response variable is

affected by more than one factor, factors vary in their effect on the response, not all



factors are measured, and the multiple limiting factors interact.

1. Introduction

Regression is a common statistical method employed by scientists to ineestiga
relationships between variables, where a response vayisb$®me function of

predictor variableX, y =f(X). Most regression applications in the ecological sciences,
whether linear or nonlinear in the parameters or nonparametric, focus on estimating
rates of change associated with the mean of the response variable distributioa as som
function of a set of predictor variables, i.e., the function is defined for the expected
value ofy conditional onX, E(y|X). Mosteller and Tukey (1977) noted that it was
possible to fit regression curves to other parts of the distribution of the response
variable, but that this was not commonly done and, thus, most regression analyses gave
an incomplete picture of the relationships between variables. Heterogeneousesgarianc
are pervasive in regression models used to estimate relationships betwddasvaria
ecology. An exclusive focus on effects (regression slope coefficients)atsslowith
changes in the means may under estimate, over estimate, or fail to distinguish rea
nonzero changes in heterogeneous response variable distributions (Terrell et al. 1996,
Cade et al. 1999).

Regression quantiles were developed by econometricians in the 1970's (Koenker
and Bassett 1978) as a straight forward, semiparametric extension of thenlaakito
estimate rates of change in all parts of the distribution of the response variaéle. T
are semiparametric in the sense that no parametric distributional form (exg),nor

Poisson, negative binomial, etc.) is assumed for the error distribution. Recatirkter



(Cade et al. 1999, Koenker and Machado 1999, Koenker and Hallock 2002) denotes the
quantiles by the Greek wherer € [0, 1], although this notation is by no means
universal. The conditional quantiles denotedyg|X) are the inverse of the
conditional cumulative distribution function of the response vari&f¢r|X) . For
example, forr = 0.90,Q,(0.90K) is the 96 percentile of the distributionyof
conditional on the values &f i.e., 90% of the values gfare less than or equal to the
specified function oK. Note, that for symmetric distributions the 0.50 quantile (or
median) is equal to the mean u. Here | consider functioksladt are linear in the
parameters, e.98y(t)X, + B1(1)X, + B,(1)X,+, ..., +B,(1)X,, where the1) notation
indicates that the parameters are for a specifipeantile. The parameters vary due to
effects of theth quantile of the unknown error distributienQuantile regression
provides a very flexible method of modeling the rates of change in the response variable
at multiple points of the distribution for both homogeneous and heterogeneous error
models, providing a much more complete picture of the relationships between variables
(Koenker and Machado 1999).

In the 1-sample setting with no predictor variables, estimating quantiles is
usually thought of as a process of ordering the sample data. The beauty of the extension
to the regression model was recognizing that quantiles could be estimated by an
optimization function minimizing a sum of weighted absolute deviations, where the
weights are functions af(Koenker and Machado 1999, Koenker and Hallock 2002).
Currently, the statistical theory and computational routines for estimatingakidgn

inferences on regression quantiles are best developed for the linear model



(Gutenbrunner et al. 1993, Koenker 1994, Koenker and Machado 1999) but also are
available for parametric nonlinear (Welsh et al. 1994, Koenker and Park 1996) and
nonparametric, nonlinear smoothers (Koenker et al. 1994, Yu and Jones 1998).
Improved methods of testing hypotheses and inverting hypothesis tests for constructing
confidence intervals on parameters of linear regression quantile models amdbot
Chapters 2 and 3.

There have been a variety of applications of quantile regression in ecology and
biology, including studies of animal habitat relationships (Terrell et al. 1996, étaire
al. 2000, Eastwood et al. 2001, Dunham et al. 2002), prey and predator size
relationships (Scharf et al. 1998), body size of deep-sea gastropods and dissolved
oxygen concentration (McClain and Rex 2001), vegetation changes associated with
agricultural conservation practices (Allen et al. 2001), variation in nuclear DNA of
plants across environmental gradients (Knight and Ackerly 2002), Mediterranean fruit
fly survival (Koenker and Geling 2001), running speed and body mass of terrestrial
mammals (Koenker et al. 1994), global temperature change over the last century
(Koenker and Schorfheide 1994), and plant self-thinning (Cade and Guo 2000). Many
applications have used regression quantiles as a method of estimating funceésnal rat
of change along or near the upper boundary of the conditional distribution of responses
because of issues raised by Kaiser et al. (1994), Terrell et al. (1996), Thomson et al.
(1996), Cade et al. (1999), and Huston (2002). These authors suggested that if
ecological limiting factors act as constraints on organisms, then the testieigects for

the measured factors were not well represented by changes in the means of response



variable distributions when there were many other unmeasured factors that were
potentially limiting. The response of the organism cannot change by more than some
upper limit set by the measured factors but may change by less when other unmeasured
factors are limiting. This analytical problem is closely related to the gemeral
statistical issue of hidden bias in observational studies due to confounding with
unmeasured variables (Rosenbaum 1995, 1999). The multiplicative interactions among
measured and unmeasured ecological factors that contribute to this patternaeslexpl
in more detail relative to regression quantile estimates and inferencespiteiCha

Although many of the initial ecological applications of quantile regression
focused on estimating a subset of the upper regression quantiles ¥e0gR0) to
identify effects of limiting factors, it is possible to obtain estimatesssche entire
interval of quantilest(e [0, 1]) as a flexible method of modeling distributional changes
conditional on some set of covariates. Regression quantile estimates can hélp revea
effects of important variables that were not measured by providing a more complete
view of heterogeneous effects in the response distribution (Chapter 4). Quantile
regression models present many new possibilities for statistical amalyde
interpretations of ecological data (Cade et al. 1999, Cade and Guo 2000). With those
new possibilities come many new challenges related to estimation, infenedce, a
interpretation. Here | provide an overview of several of the issues ecologiskelre |
to encounter when conducting and interpreting quantile regression analyses. More

technical discussion is provided in the relevant literature cited.



2. Quantilesand ordering in the linear model

Regression quantile estimates are an ascending sequence of planes that are above a
increasing proportion of sample observations with increasing values of the quantiles
(Fig. 1.1A). It is this operational characteristic of regression quantilesxteatds the
concepts of quantiles, order statistics, and rankings to the linear model (Gutenbrunner et
al. 1993, Koenker and Machado 1999, Koenker and Hallock 2002) The proportion of
observations less than or equal to a given regression quantile estimate, e.§., the 90
percentile given by,(0.90K) in Figure 1.1A, will not in general be exactly equat.to

The simplex linear programming solution minimizing the sum of weighted absolute
deviations ensures that any regression quantile estimate will fit througtsig el of

then sample observations for a model with- 1 predictor variableX. This results in a

set of inequalities defining a range for the proportion of observations less than or equal

to any selected quantitegivenn andp (Cade et al. 1999, Koenker and Machado 1999).

Regression quantiles, like the usual 1-sample quantiles with no predictor
variables, retain their statistical properties under any (linear or nonlimeaqtonic
transformation of as a consequence of this ordering property, i.e., they are equivariant
under monotonic transformation p{Koenker and Machado 1999). Thus it is possible
to use a nonlinear transformation (e.g., logarithmig) tof estimate linear regression
guantiles and then back transform the estimates to the original scale (a nonlinear
function)without any loss of information. This, of course, is not possible with means,

including those from regression models.
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Figure 1.1 (A) is a sampl@ €& 90) from a homogenous error (lognormal with
median = 0 and = 0.75) modely = 3,+ B,X; + €, B, = 6.0 and3, = 0.05 with 0.90,
0.75, 0.50, 0.25, and 0.10 regression quantile egtisn@olid lines) and least squares
estimate of mean function (dashed line). Sampienases b,(t) in (B) andb,(T) in

(C), are shown as a thick solid step function. aRaaterg,(1) in (B) andp,(t) in (C)
are the thin solid lines. Dashed lines connecpeimds of 90% confidence intervals.
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The examples presented here have been kept to simple linear regression models
with just an intercept and a single predictor variable for simplicity of prassnta
More complicated linear models involving a mix of categorical (indicator vasalaind
multiple continuous variables and their interactions are possible (Cade et al. 1999,
Dunham et al. 2002). The parameter estimates in regression quantile linear models
have the same interpretation as those in any other linear model. They are rates of
change conditional on adjusting for the effects of the other variables in the model.
3. Homogeneous and heter ogeneous models
The simplest, unconstrained form of the regression quantile estimates allows the
predictor variablesX) to exert changes on the central tendency, variance, and shape of
the response variablg) (distribution (Koenker and Machado 1999, Koenker and
Hallock 2002). This is possible without modification of the model specified as a
function of the predictor variables. When the only estimated effect is a change in
central tendency (e.g., means) of the distributiopadnditional on the values of we
have the familiar homogeneous variance regression model associated with ordinary
least squares regression (Fig. 1.1A). All the regression quantile slopetesiijfa
are for a common parameter and any deviation among the regression quantilesestimate
is simply due to sampling variation (Fig. 1.1C). An estimate of the rate of change in the
means from ordinary least squares regression also is an estimate of tipasameter
as for the regression quantiles. The intercept estirbgtgf the regression quantile
model are for the parametric quantpg(r), of y whenX; = 0, which differ across

quantilest and for the mean p (Fig. 1.1B). Intercept estimates differ across quantiles



both because of sampling variation and because the parameters differ. Here thye prima
virtue of the regression quantile estimates of the intercept is that they aepeatient
on an assumed form of the error distribution as when least squares regression is used,
which assumes a normal error distribution.

The properties associated with the intercept translate to any other fixed value of
Xy, Xa .., X, @s when estimating prediction intervals for some specified value of the
predictor variables (Neter et al. 1996). The interval between the 0.90 and 0.10
regression quantile estimates in Figure 1.1A at any specified vakie »is an 80%
prediction interval for a single future observation. Prediction intervals for some numbe
of future observations that assume a normal error distribution as is done in ordinary
least squares regression are sensitive to departures from the distribissomapaons
(Neter et al. 1996), whereas regression quantile estimates avoid this dstabuti
assumption altogether. Given the skewness in the response distribution in Figure 1.1A
it is easy to see that a symmetric prediction interval about an estimatenoédine
would not have correct coverage, as would occur if we assumed a normal error
distribution model. For example ¥t= 70.5 the 80% prediction interval for a single
new observation is 8.43 - 10.97 based on the least squares estimate assuming a normal
error distribution, whereas the interval based on the 0.90 and 0.10 regression quantile
estimates is 8.85 - 10.88. Zhou and Portnoy (1996) provided an empirical evaluation of
various intervals based on regression quantile estimates. Simultaneous prediction
intervals for allX (tolerance bands) based on inverting quantile rankscore tests are

discussed in Chapter 2 and 4.



When the predictor variablésexert both a change in means and a change in
variance on the distribution gf we have a regression model with unequal variances (a
location/scale model in statistical terminology). As a consequence, chaniges in t
guantiles ofy acrossxX cannot be the same for all quantitg§ig. 1.2). The slope
estimated, (t) differ across quantiles both because of sampling variation and because
the parameters differ since the variancg ananges as a function Xf(Fig. 1.2C).

Note that in this regression model with heterogeneous variances the pattern o§ change
in estimated,(t) mirror those fob,(t). In this situation ordinary least squares
regression is commonly modified by incorporating weights (that usually have to be
estimated) that are inversely proportional to the variance function (Neted806).
Typically, the use of weighted least squares is done to improve estimates of the
sampling variation for the estimated mean function, and not done specifically to
estimate the different rates of change in the quantiles of the distributigns of
conditional onX. However, Hubert et al. (1996) and Gerow and Bilen (1999) described
applications of least squares regression where this might be done. Estimating
prediction intervals for some number of future observations based on weighted least
squares estimates implicitly recognize these unequal rates of change innflesjoa

y (e.g., Cunia 1987).

Generalized linear models offer alternative ways to link changes in the earianc
(62 of y with changes in the mean (i) based on assuming some specific distributional
form in the exponential family, e.g., Poisson, negative binomial, gamma (McCullagh

and Nelder 1989). But, again, the purpose usually is to provide better
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Figure 1.2 (A) is a sampl@ € 90) from a heterogeneous error (normal wath O
ando = 1.0 + 0.0¥;) model,y = B, + B,X; + €, B, = 6.0 and3; = 0.10 with 0.90,

0.75, 0.50, 0.25, and 0.10 regression quantile estisn@olid lines) and least squares
estimate of mean function (dashed line). Sampienases,by(t) in (B) andb,(T) in

(C), are shown as a thick solid step function. aReter3,(t) in (B) andp,(t) in (C)
are the thin solid lines. Dashed lines connecpeimds of 90% confidence intervals.
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estimates of rates of change in the mean (jy)rather than estimates in the changes in
the quantiles oy which must occur when variances are heterogeneous. Estimating
prediction intervals for generalized linear models would implicitly recoghiaerates

of change in the quantiles ptannot be the same for all quantiles, and these interval
estimates would be linked to and sensitive to violations of the assumed error
distribution.

An advantage of the regression quantile approach to modeling heterogeneous
variation in distributions of the responses is that no specification of how the variance
changes are linked to the mean are required. Furthermore, it is possible for the
predictor variables to also exert changes in the shape of the distributions (Koenker and
Machado 1999, Koenker and Hallock 2002). Complicated changes in central tendency,
variance, and shape of distributions are common in statistical models applied to
observational data because of model misspecification. Model misspecification ca
occur because the appropriate functional forms are not used (e.g., linear instead of
nonlinear) and because all relevant variables are not included in the model (Cade et al.
1999, Chapter 4). Failure to include all relevant variables does not necessarily occur
because of scientific neglect but because of insufficient knowledge of or ability t
measure all relevant processes. This should be considered the norm for observational
studies in ecology as it is in many other scientific disciplines.

An example of a response distribution pattern that may involve changes in
central tendency, variance, and shape is in Figure 1.3. These data from Irwin and Cook

(1985) and Cook and Irwin (1985) were collected to estimate how pronghorn

12



(Antilocapra americanpdensities changed with features of their habitat on winter
ranges. Here shrub canopy cover was the habitat feature used as an indirect measure of
the amount of winter forage available. Note that rates of change in pronghorn densities
due to shrub canopy covdx, were fairly constant for the lower 1/3 of the quantiles

(0.25 per change in % cover), increased moderately in rate for the central 1/3 of the
quantiles (0.25 to 0.50), and doubled (0.50 to 1.0) in the upper 1/3 of the quantiles
(Fig.1.3C). The changesIn(t) do not appear to mirror those toft) indicating that

there is more than just a change in central tendency and variance of pronghorn densities
associated with changes in shrub canopy cover. Clearly, too strong a conclusion is not
justified with the small sampl& E£28) and large sampling variation for upper quantiles

as indicated by 90% confidence intervals on the estimates. But either an ordirtary leas
squares regression estimate<£ 0.483, 90% CI = 0.31- 0.66) or more appropriate
weighted least squares regression estimate would fail to recognize thdtqerong

densities changed at both lower and higher rates as a function of shrub canopy cover at
lower and upper quantiles of the density distribution, respectively. Here, the imgress
guantile estimates provide a more complete characterization of an intervahgéstia
pronghorn densities that were associated with changes in winter food availability a
measured by shrub canopy cover. These intervals are fairly large because pronghorn
densities on winter ranges are almost certainly affected by more protessgasst

food availability as represented by shrub canopy cover.

4. Estimates arefor intervals of quantiles

Regression quantile estimates break the interggdD, 1] into a finite number of

13
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Figure 1.3. (A) is pronghorn densitisg by shrub canopy coveX{) onn =28

winter ranges (data from Cook and Irwin 1985) arg000.75, 0.50, 0.25, and 0.10
regression quantile estimates (solid lines) and kgsares regression estimate (dashed
line) for the modey = B,+ B, X, + €. Sample estimateby(t) in (B) andb,(1) in (C),

are shown as a thick solid step function. Dashexblconnect endpoints of 90%
confidence intervals. Missing interval endpoimgB) were not estimable.

)
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smaller, unequal length intervals. Thus, while we may refer to and graph theetimat
function for a selected regression quantile such as the 0.90, the estimated function
actually applies to some small interval of quantiles, e.g., [0.894, 0.905] for the 0.90
regression quantile in Figure 1.1. Unlike the 1-sample quantile estimates, the [0, 1]
interval of regression quantile estimates may be broken into more theervals that

aren’t necessarily of equal lengtm1/The number and length of these intervals are
dependent on the sample size, number or parameters, and distribution of the response
variable. Estimates plotted as step functions in Figure 1.1B and C are for 101 intervals
of quantiles on the interval [0, 1] for which each has an estibgajeandb,(7),
corresponding to the intercept and slope. Because the estimates actually apply to a
small interval of quantiles, it is appropriate to graph the estimates by istefval

guantiles as a step function (Fig. 1.1B and C). Graphing estimates as a step function by
guantiles becomes essential when there are >2 predictor variables in a model. For a
finite sample size andp + 1 predictor variableX,, X, X,, ..., X, (X, is a column vector

of 1's for an intercept), the maximum number of unique regression quantile estimates on
1 € [0, 1] is of ordemnlog(n) (Koenker and d’Orey 1987, Portnoy 1991).

5. Sampling variation differs across quantiles

It should come as little surprise that the sampling variation can differ amongegmanti
Generally, sampling variation will increase as the valueagproaches 0 or 1, but the
specifics are dependent on the data distribution, model fit, sample sizé number of
parameterp. Estimates further from the center of the distribution (the median"or 50

percentile given by, (0.50K)) usually cannot be estimated as precisely. To display the

15



sampling variation with the estimates (Fig. 1.1B and C), a confidence band across the
quantilest € [0, 1] was constructed by estimating the pointwise confidence interval for

19 selected quantilas= [0.05, 0.10, ..., 0.95]. These intervals were based on inverting

a quantile rankscore test (Koenker 1994, Cade et al. 1999, Koenker and Machado 1999,
Chapter 2). It is possible to compute confidence intervals for all unique intervals of
guantiles but this computational effort is not usually required to obtain a useful picture

of the estimates and their sampling variation. The endpoints of the confidence intervals
were not connected across quantiles as a step function because they were ongdestima
for a subset of all possible quantiles.

Other procedures for constructing confidence intervals than the rankscore test
inversion exist, including the direct order statistic approach (Zhou and Portnoy 1996,
1998), a drop in dispersion permutation test (Chapter 3), and various asymptotic
methods dependent on estimating the variance/covariance matrix and the quantile
density function (Koenker and Machado 1999). An advantage of the rankscore test
inversion approach is that it turns the regression quantile inference problem into one
solved by least squares regression for which there already exists a weeliteaf r
theory and methods (Chapter 2).

In the example in Figure 1.1, the 90% confidence intervals for both the intercept
(B,) and slopef;) are narrower at lower quantiles, consistent with the fact that the data
were generated from a lognomal error distribution (medianc—0).75) which had
higher probability density and, thus, less sampling variation at lower quantiles. Also

note that the endpoints of the confidence intervals estimated by inverting the quantile

16



rankscore test are not always symmetric about the estimate (Koenker 1994) swhich i
consistent with the skewed sampling distribution of the estimates for smakelr

more extreme quantiles. The population parameters for the intgigeptand slope,

f.(7), are contained within the 90% confidence intervals for most quantifeg. 1.1B

and C).

6. Second order properties of the estimates ar e useful

The rates of change across quantiles in the slope parameter estimategy(&@Cli

can be used to provide additional information that can be incorporated into the model to
provide estimates with less sampling variation. The sampling variation otCtesele
regression quantile estimate is affected by changes in the parameters ilocam

interval surrounding the selected quantile, s&y, whereh is some bandwidth

(Koenker and Machado 1999). Weighted regression quantile estimates can be based on
weights that are inversely proportional to the differences in estimates ferlsoah

interval of quantiles, e.g., 0.90 £ 0.06 (Koenker and Machado 1999, Chapter 4). A
variety of methods have been proposed for selecting appropriate bandwidths (Koenker
and Machado 1999). The difference between the local interval approach to constructing
weights and estimating the variance function to construct weights as for vidiegute
squares regression (e.g., Neter et al. 1996:400-409) is that the former approach allows
the weights to vary for different quantiles, whereas the latter approach assumes
common weights for all quantiles (Chapter 4). Differential weights by quaaties

more appropriate for patterns of response similar to those in Figure 1.3 where a second

order analysis suggested that rates of change in the estimates were ynptdilgile to

17



changes in means and variances because the chatg@$ atross quantiles did not
mirror those ofb,(t). Common weights for all quantiles are appropriate for patterns of
responses similar to those in Figure 1.2 where only location and scale changes occurred
as indicated by changeshi(t) across quantiles that mirrored thoségfft).

7. Discussion

Estimating quantiles of the response distribution in regression models is not new. This
has always been required for constructing prediction and tolerance intervals fer futur
observations, but has usually been done only in a fully parametric model where the
error distribution takes some specified form. In the full parametric model tloeisari
qguantiles of the response distribution are estimated by a specified multiple of the
estimated standard deviation of the parametric error distribution which is then added t
the estimated mean function. Vardeman (1992) stressed the importance of prediction
(for some specified number of future observations) and tolerance intervals (for a
proportion of the population and thus any number of future observations) in statistical
applications. Much current statistical practice with linear models focusesiomatng
confidence intervals on parameters. The difference between prediction/tolerance
intervals and confidence intervals is that the former deal with the samplinoragha
individual observations and the latter with the sampling variation of parameter
estimates (which are a function of thebservations). Prediction and tolerance

intervals are far more sensitive to deviations from the assumed paranretric er
distribution than are confidence intervals. Regression quantile estimates cad be us

construct prediction and tolerance intervals without assuming some paranmetric er
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distribution and without specifying how variance heterogeneity is linked to changes in
means.

The additional advantage provided by regression quantiles is to directly estimate
changes in the quantiles of the distribution of responses conditional pipitbéictor
variables, i.e£,(1), B1), ....B,(1), Wwhich cannot be equal for all quantiles models
with heterogeneous error distributions. Differences in rates of change ardifparts
of the distribution are informative in a variety of ecological applications. Coatgtic
forms of heterogeneous response distributions should be expected in observational
studies where many important processes may not have been included in the candidate
models. From a purely statistical standpoint, higher rates of change assoittated w
some more extreme quantiles (etgz0.90 orr < 0.10) of the distribution may be
detected as different from zero in sample estimates more often (i.e.r g@aéz) than
some central estimates such as the mean or media®.%0). This can occur because
greater differences between the parameter estimates and zero (rf)cceffaxtset the
greater sampling variation often associated with the more extreme quamtiesise of
regression quantile estimates in linear models with unequal variances wiit per
detection of effects associated with variables that might have been disnsissed a
statistically indistinguishable from zero based on estimates of meamnsli(€eal.

1996).

The ability to statistically detect more effects with regression dearthian

conventional linear model procedures is not a panacea for investigating relationships

between variables. Along with the greater ability to detect a multitude ofeffemes
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the additional responsibility for the investigator to clearly articulate vghatportant to

the process being studied and why. A search through all possible quantiles on a large
number of models with many combinations of variables for those with strong nonzero
effects is no more likely to produce useful scientific generalizations thaarsim
unfocussed modeling efforts using conventional linear model procedures.

Finally, software is currently available to provide a variety of quantile ssigne
analyses. Scripts and fortran programs to work with S-Plus are available frarlthe
sites of Roger Koenkemwvw.econ.uiuc.edu~roger/research/home.hand the
Ecological Archives E080-00ivvw.esapubs.org/archive/ecol/ EO80/001/
default.htm). Add on packages for R are available from the Comprehensive R Archive
Network (ib.stat.cmu.edu/R/CRAN/Quantile regression estimates for linear models,
guantile rankscore tests, and permutation testing variants are available iogbens|
statistical packaged available from the U. S. Geological Suweyw(fort.usgs.gov/
products/ software/blossom.gsprwo econometrics commercial packages that provide
guantile regression are Stata and Shazam.
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Chapter 2

Rankscor e and Permutation Testing Alternatives
for Regression Quantile Estimates

Abstract Performance of quantile rankscore tests used for hypothesis testing and
constructing confidence intervals for linear quantile regression estirfatas< 1)

were evaluated for conditions relevant to ecological investigations of anirpahses

to their physical environment. Conditions evaluated included models with 2 - 6
predictors, moderate collinearity among predictors, homogeneous and heterogeneous
errors, small to moderate samplas=(20 - 300), and central to upper quantiles (0.50 -
0.99). Test statistics evaluated were the conventional quantile ranksstatestic that

is distributed as a Chi-square random variable wilegrees of freedom (whege
parameters are constrained hy H :) andr amatistic with its sampling distribution
approximated by permutation or by Rristribution. The permutatidf test

maintained better Type | errors than Theest for models with smaller, greater

number of parametes and more extreme quantiles Both versions of the test
required weighting to maintain correct Type | errors when heterogeneity under the
alternative model increased to around 5 standard deviations across the doxhaM of
double permutation scheme was found to improve Type | errors for the perm&tation

test when null models were forced through the origin, as when testing the intercept or



any parameter in weighted models. Power was similar for conditions wher€ éath

F tests maintained correct Type | errors. Confidence intervals on parameters and
tolerance intervals for future predictions were constructed based on test inversion f
example application relating trout densities to stream channel width:depth.

1. Introduction

Estimating the quantiles (Ot < 1) of a response variable conditional on some set of
covariates in a linear model has many applications in the biological and ecological
sciences (Terrell et al. 1996, Scharf et al. 1998, Cade et al. 1999, Cade and Guo 2000,
Haire et al. 2000, Eastwood et al. 2001, Dunham et al. 2002). Quantile regression
models allow the entire conditional distribution of a response varablée related to
some covariateX, providing a richer description of functional changes than is possible
by focusing on just the mean (or other central statistics), yet requiring minimal
distributional assumptions (Koenker and Bassett 1978, 1982, Koenker and Machado
1999). Quantile regression estimates are especially enlightening fmmshas

involving heterogeneous responses where by definition rates of change are not the same
across all parts of the response distribution.

Regression quantile models have been used where scientific considerations
suggested that upper quantiles near the maximum better estimated effieets of t
biological process being measured as a limiting constraint (Cade et al. 1999, Cade and
Guo 2000, Huston 2002). Statistical difficulties associated with characterizitigd
factors in ecology occur because the measured factor(s) may limit an orgahysah

some times or places, whereas other factors that were not measured matyrige limi
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otherwise (Kaiser et al. 1994, Thomson et al. 1996, Cade et al. 1999, Cade and Guo
2000, Huston 2002). Temporal and spatial shifts in ecological limiting factors are to be
expected. In an observational study it is impossible to know whether the measured
covariates describe the factor actually limiting the organism at theatwchéocation of
sampling. Consequently, there may be large, unexplained heterogeneity in responses
across levels of the measured covariates such that rates of change arestess for
conditional central statistics (e.g., means or medians) compared to those for more
extreme parts of the distribution (e.g., 9099 percentiles). Heterogeneity induced by
interaction effects of unmeasured but important processes (Cade et al. 1999, Huston
2002) creates a form of hidden bias typical in observational studies (Rosenbaum 1991,
1995).

Regression quantiles offer an estimation approach with considerable appeal both
for prediction and understanding, regardless of whether interest is in extremé&gquanti
(e.g., 95 - 99 percentiles) for characterizing the boundary of a response distribution
associated with some limiting factor (Cade and Guo 2000), or simply as a flexible
method of estimating effects associated with heterogeneous distributiczrs ¢AH.

2001). Interpretations and properties of the estimated effects in regressioreguanstil
similar to more familiar linear modeling procedures such as least squgmessien,

but now are made for a family of quantiles in some interval that is selected based on
scientific considerations (Cade et al. 1999, Koenker and Machado 1999, Koenker and
Hallock In press). Regression quantile estimates also have a useful propertyawt sha

by estimates of means, equivariance under any monotonic transformation, that actually
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allows for simpler implementations and interpretations for transformable nanline
models (Buchinsky 1995, Cade et al. 1999, Koenker and Geling 2001).

There is a well developed theory for estimating covariance matrices to provide
inferences with asymptotic validity for linear regression quantile modelsr(ker and
Bassett 1978, 1982, Koenker and Machado 1999). These covariance methods rely on
estimating the reciprocal of the error density function at the quantile of interes
f(F*(0)), i.e., the sparsity function. Performance of these asymptotic covariance
methods at smaller sample sizes often is poor (Koenker 1987, Buchinsky 1991) and the
asymptotic theory becomes suspect at more extreme (>0.7 and <0.3) quantiles
(Chernozhukov and Umantsev 2001). Koenker (1994) introduced the idea of
constructing confidence intervals by inverting a quantile rankscore test (Gutenbrunner
et al. 1993) which does not require estimating the sparsity function and was expected to
perform well under linear heteroscedastic regression models. The quantil®ranksc
test performed well at smaller sample sizes typically encountered iniballagd
ecological investigations in the limited simulations of Koenker (1994).

Questions remain about performance of the quantile rankscore test and potential
modifications. In typical unimodal error distributions where density of the errors
decreases as one moves away from the median, sampling variation and power of the
more extreme quantiles (e.g., the 0.95 quantile) will be reduced compared to more
central quantiles such as the median (0.50). How rapidly performance erodes will be a
function of the error distribution, sample size, and number of parameters in a model. It

was, thus, of interest to investigate performance of the quantile rankscoredssteac
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range of quantiles, sample sizes, error distributions, and model structures torgeterm
where inferences become unreliable. As the quantile of interest approaches 0
(minimum) or 1 (maximum), inferences may be more amenable to extreme value
testing theory than conventional testing approaches (Chernozhukov and Umantsev
2001). The intercept parameter in a quantile regression model can be tested with the
qguantile rankscore test, although this clearly is excluded by the general theory of
rankscore tests (Gutenbrunner et al. 1993). If the quantile rankscore test for the
intercept parameter provides valid inferences, this procedure could be used for
constructing confidence intervals at any specified value of the covariates. i&xseios
prediction and tolerance intervals for some regression model forms would then be
possible. Although the quantile rankscore test was evaluated for some linear
heteroscedastic model forms and found to perform well (Koenker 1994), Koenker and
Machado (1999) recently proposed a weighted modification of the quantile rankscore
tests, where weights were a function of heterogeneity under the null hypothesis. A
more systematic evaluation of the effects of heterogeneity on performance of the
qguantile rankscore test would help determine when it is desirable to use a weighted
version of the test statistic.

Here | evaluated performance of the unweighted form of the quantile rankscore
test for central to extreme quantiles, a range of error structures, smalti¢évate
sample sizes, and model forms likely to be encountered in ecological applications
where the objective is to estimate some organism’s response to its environnssd. Ba

on relationships between the asymptotic Chi-square form of the quantile ranksicore tes
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statistic and afr-test in a linear model, | considered alternative versions of rankscore
tests that were evaluated by permutation arguments as well as by standiandidrst
theory. Weighted forms of the rankscore tests based on weighted quantile regression
estimates also were evaluated. The alternative inference procedureppliectta a
quantile regression analysis of Lahontan cutthroat t@uc¢rhynchus clarki

henshaw)i response to variations in their stream habitat, expanding on the previous
analyses of Dunham et al. (2002).

2. Quantile Regression M odel

Thet"regression quantile (0t < 1) for the heteroscedastic linear location-scale model
y = Xp +Teis defined a®, (t|X) = Xp(r) andp(z) = p + F,*(x)y; wherey is ann x 1
vector of dependent responsgss ap x 1 vector of unknown regression parametgrs,

is ann x p matrix of predictors (first column consists of 1's for an intercept tgrim)a

p x 1 vector of unknown scale paramet&rss a diagonah x n matrix where the

diagonal elements are theorresponding ordered elements ofhve 1 vectorXy
(diag(Xy)), € is ann x 1 vector of random errors that are independent and identically
distributed (iid), and~," is the inverse of the cumulative distribution of the errors
(Koenker and Bassett 1982, Buchinsky 1991, Gutenbrunner arittdwael 992,

Koenker and Machado 1999). Homoscedastic regression models are a special case of
the linear location-scale model wher (1,0,...,0) andQ,(t|X) = Xp(), B(z) =B +
(F.*(),0,...,0), where all parameters other than the interg&ptirf p(z) are the same

for all t. More general forms of heteroscedastic errors can be accommodated with

regression quantiles (Koenker 1997, Koenker and Machado 1999) but were not
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considered here.
The restriction imposed oR, to estimate regression quantiles is thet a
quantile ofy - Xp(z) conditional onX equals OF,*(t| X) = 0. Estimatedy(t), of p(t)

are solutions to the following minimization problem:

n p
min[}_ p,(y; - ) b,x,)]
i=1 j=0 (1)
where p_(€) =€t - 1(e<0)),
and I(-) is the indicator function

The estimating equations in (1) yield primal solutions in a modification of the B&roda

and Roberts (1974) simplex linear program for any specified valuéaienker and

d'Orey 1987). With little additional computation the entire regression quantile proces

for all distinct values of can be estimated (Koenker and d'Orey 1987, 1994).
Consistent estimates with reduced sampling variation for heteroscedeesic li

models can be obtained by implementing weighted versions of the regression quantile

estimators, where weights are based on the sparsity function at a given quantile and

covariate value (Koenker and Portnoy 1996, Koenker and Machado 1999). In the linear

location-scale model this simplified to usingrar n weights matrixW = I, where

thep x 1 vector of scale parametgra/ould usually have to be estimated in

applications (Gutenbrunner and Jtkeva 1992, Koenker and Zhao 1994, Koenker and

Machado 1999). The weighted regression quantile estimates then are given by
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n p
min [E pr(yi _E bj Xij)Wi]
i-1 i=0
where p_(€) =€(t - 1(e<0)), (2)
W, is a weight
and I(-) is the indicator function
which is easily implemented by multiplyipgandX by W and then using the
unweighted estimator (1).

3. Rankscore Test Statistics

The primal linear programming solution for (1) has as its corresponding dual solution

max{y‘aX’a = (1-1)X'1, a € [0,1]"}
where 1 denote an n-vectol of 1's

@)

that serves as the basis for constructing rankscore tests using the regresgilen qua
estimates (Gutenbrunner et al. 1993, Koenker and d’Orey 1994, Koenker 1994, 1997).
Thet-quantile rankscore test uses thguantile score functiong,(t) =t - I(t <), on

then x 1 vector of dual linear programming solutioa&@) = [0,1]', associated with
estimating the reduced parameter model corresponding to constraints imposed by the
null hypothesis on the full parameter model. The reduced parameter model,

y - X,&(t) = X,B,(r) + I'g, is constructed by partitioning = (X,, X,), whereX, is

nx (p - g) andX, isn x g; and by partitionin@ = (8, p,), wherep,(t1)isap-q) x 1

vector of unknown nuisance parameters under the nupgtids aq x 1 vector of
parameters specified by the null hypothesjspi(t) = (t) (frequentlyg(t) = 0) for the

full parameter model = X,B,(1) + X,B,(tr) + I'g; andy, I', ande are as above. Thex1

vector of rankscoreqt) = a(t) - (1 -t)1, wherel denotes an x 1 vector of 1's, is
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regressed on the design matrix and the test statistic

T =S(1)' Q*S(1)/(x(1 - 1)), (4)
whereQ = X,/ (1 - X,(X,' X)X, )X, andS(t) = n?KX, - X,(X;'X,) X, X,)'r (1), is
asymptotically distributed under,H : gswith q degrees of freedom. The elements of
a(t) are 1 when the residuals for the reduced model are positive, 0 when the residuals
are negative, and in the interval (0,1) when the residuals are 0, i.e., observations fit
exactly by the" regression quantile estimate. Ranksco(esthen arer for positive
residualsy - 1 for negative residuals, and in the intereal ,t) when residuals are 0.
The rankscores (1), correspond to the quantile weights used in estimating the reduced
parameter null model in (1). Validity of the rankscore test assumes a positiiy densi
for y at the estimate(F *(t)) >0.

If X, =x, andp,(t) is a scalar, i.e., a single predictor is being tested, then the
quantile rankscore statistic simplifies and under the null hypothesis this 1 degree of
freedom test is referenced to a standard normal distribution (Koenker 1994, 1997). This
construction allows confidence intervals to be easily estimated by inversion with a
modification of the linear program used to estimate regression quantiles (Koenker
1994). Because the sampling distribution of the rankscore test statistic is discosti
Koenker (1994) recommended interpolating between adjacent hypothesized values of
B,(t) = &(r) for constructing confidence intervals when inverting quantile rankscore
tests. Confidence intervals estimated by inverting the quantile rankscorayeseé m

asymmetric.
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Thert-quantile rankscore test is based on a nondecreasing, square integrable
scoring function with meap(¢) = 0 and variance?(¢) = t©(1- 1) and, thus, is similar
in form to the aligned rank transform statistic considered by Mansouri (1999). Note
thatS(t)'Q'S(r) in (4) is the sum of squares of regressiondgrSSRegf) = SSEf),.q
- SSEf), Where SSHEj,.q =1 (t)’(I - X,(X;'X)*X,)r(r) and SSK(,, =
r(z)’ (I - X(X’X)*X")r(zr). Mansouri (1999) proved that a test statistic form like (4) was
just the limiting @ - «) form of anF statistic,

Fon-p= (SSEf)ieq- SSEE))/(AMSE()), ®)
where MSEf) = SSEf),,,/(n - p) - 6*(¢), and established via simulation that (5) had
better small sample Type | error rates than (4). Because the sampliragutiesirof the
T-quantile rankscore test is discontinous and increases in discontinuiéppsoaches 0
or 1, | expected that there might be some small sample performance advantages to usi
(5) over (4) for hypothesis tests or constructing confidence intervals by inverting the
guantile rankscore test.

TheF statistic for the quantile rankscore test (5) is based on a regression with a
dependent variable(t), that is a function of residuals under the reduced parameter null
model. This test statistic is amenable to evaluation by permutation arguméehtsviha
been developed for testing subhypotheses in least squares regression (Kennedy and
Cade 1996, Anderson and Legendre 1999, Anderson and Robinson 2001). The
permutation distribution computed for (5) might yield more reliable Type | eres edt
smaller sample sizes and more extreme quantiles th&ndis¢ribution approximation

with g andn - p degrees of freedom. The quantile rankséotest evaluated by
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permutation arguments is defined by the slightly simpler form for the observed value of
the statistic

Fo = (SSEf)req- SSEL) )/ (SSEQ) ), (6)
where SSHi),.,and SSH(,,, are as above, because the degrees of freedom in (5) are
unnecessary as they are invariant under permutation. Note th&SEf),,,/(t(1 - 1))
=TandF, x ((n-p)/g) = F,,.,. The permutation test statistk, has a simple
interpretation as a proportionate reduction in sums of squares when passing from
reduced to full parameter models for a specified quantile.

Following Kennedy and Cade (1996), Anderson and Legendre (1999), and
Anderson and Robinson (2001), the observed value of the rankscore test stgtistic,
evaluated under the null hypothesis by permuting-tpgantile rankscores(t), among
the rows of the design matriX) with equal probability,i{)™*. A large random sample
of sizemis used to approximate timepossible permutations. Probability under the
null hypothesis that > F, is approximated by (the numberfot F, + 1)/(m+ 1). |
used a minimum oim+ 1 = 10,000 to achieve probability approximations with
minimal variation due to the Monte Carlo resampling.

Although permuting residualg €y - X,b,) under the null reduced parameter
model does not in general yield exact permutation probabilities except when the null
parameter is just an intercept)( this permutation approach due to Freedman and Lane
(1983) was found to have perfect correlation asymptotically with the exact tgst (onl
possible whetfs, is known) (Anderson and Robinson 2001) and has performed well in

simulation studies (Cade and Richards 1996, Kennedy and Cade 1996, Anderson and
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Legendre 1999, Legendre 2000). There is some correlationiy{) among the
residuals and they don’t have constant varianced®E o?(1 - X,(X;'X,) X)),
implying that they are not exactly exchangeable. Dependency among the residuals
decreases with increasing sample size providing some asymptotic jtistifiica
treating them as exchangeable random variables (Randles 1984). Commenges (In
Press) established that transformations to preserve exchangeabilityicst ttveof
moments of the residuals must reduce the rank ai thé vector of residuals to an
(n-p + @) x 1 vector of uncorrelated residuals, e.g., the best linear unbiased residuals
with scalar covariance of Theil (1965). This approach was not pursued here. However,
thet-quantile rankscore transformation of residualstol, t] under the null model
should approach constant variance more rapidly than raw residuals. There are at most
n- p + qresiduals with rankscores obrt - 1, and at leagt - g rankscores in the
interval ¢ - 1,1). Together these conditions should reduce dependency among the
transformed residuals and improve exchangeability under the null model.

An obvious modification of the quantile rankscore tdsésdF is to
incorporate a weights matriyy, in estimating the reduced parameter null model and in
constructing the test statistics (4), (5) and (6). The disadvantage of this apptbath is
in applications the weights are unknown and must be estimated. Part of the motivation
for the quantile rankscore test was a belief that converting to scores in thd interva
[t - 1,7] would eliminate the need to formally model error heterogeneity (Koenker
1994). Koenker and Machado (1999) proposed a weighted version of the quantile

rankscore test, where weights were a function only of predictors in the null iXggel (
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whereas | considered weights as a function of predictors in the full model (
4. Simulation Experiment
Although my primary interest was in performance of the test statisticedggssion
guantile models estimated with heterogeneous responses, | first conducted a set of
Monte Carlo simulations with homogeneous errors to establish performance for models
with simpler error structure. Normal € 0,c = 1), uniform (min = -2, max = 2), and
lognormal (median = @&y = 0.75) error distributions were used to provide responses
with symmetric, unimodal variation with greatest density at the center, syrom
variation with constant density, and asymmetric variation with density in a long upper
tail. A limited set of simulations with Poisson error distributions was made lwatya
the quantile rankscore test when there were many tied integer values as would occur
with counts of organisms, violating the assumption of positive density at the estimate
Error distributions were centered on their 0.50, 0.75, 0.90, 0.95, or 0.99 quantiles so
thatF,* (t| X) = 0, providing a range of central to extreme regression quantiles. Note
that similar simulation results for quantiles in the lower tail (0.25, 0.10, 0.05, and 0.01)
would be obtained for the symmetric error distributions.

Simple 2 parameter and 6 parameter multiple regression models were simulate
for n = 20, 30, 60, 90, 150, and 300. Independent variables were structured to have a
range of values and correlation structure similar to what might be expectedsiaresea
of forest habitat structure for avian species. Independent variables were sthgctur
thatX,was a column of 1's for the interceli;was uniformly distributed (0, 100X,

was negatively correlated £ -0.89) withX, specified by the functioX, = 4,000
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-20X; + N(1 = 0,6 = 300);X; was positively correlated € 0.94) withX, specified by
the functionX; = 10 + 0.4, + N(1 = 0,0 =16); X, was a 0,1 indicator variable
randomly assigning half the sample to each of 2 groupsXawds the multiplicative
interaction ofX;andX, ThusX, ranged from O - 100 similar to measures of percent
tree canopy covek, had most values in the range 0 - 5,000 and was inversely related
to tree cover similar to density (stems/ha) of a shade intolerant shru, laad most
values in the range 0 - 60 similar to tree height (m) and was positively related to tr
cover. VariableX,andX; were negatively correlated£ -0.85) with each other
through their indirect functional relation wi¥y. The indicator variableX;) and its
interaction withX; (X;) allowed the effect oX, for the regression quantile function to
differ in slopes, intercepts, or both terms for the 2 groups.

Each combination of conditions (quantile, error distribution, sample size, and
model structure) was sampled 1,000 times, and the test stafisich-, were
computed for each sample. Probabilities for the permutktiest were evaluated with
separaten + 1 = 10,000 random samples of the permutation distribution. Cumulative
distribution function (cdf) plots of the Type | error probabilities under the null
hypothesis were graphed and compared with the expected uniform cdf. However, point
estimates fon = 0.05 and 0.10, corresponding to coverage for 95% and 90%
confidence intervals, were graphed across the combination of model conditions because
the number of graphs required to display the cdf plots was excessive. The 99%
binomial confidence interval for 1,000 simulationsdor 0.10 is 0.076 - 0.124 and for

a =0.05is 0.032 - 0.068, which can be used as a guide to judge how much the
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estimated error rates exceeded variation expected from the samplingisimsula
Power under the alternative hypotheses was graphed only=f0r05 across all
combinations of conditions, although cdf plots were initially examined.

All data for the simulation studies were generated with functions in S-Plus 2000
(Mathsoft, Inc., Seattle, WA). Regression quantile estimates and testicstatiere
computed by a static memory compilation of Fortran 95 routines implemented in the
Blossom software available from the U. S. Geological Survey
(www.mesc.usgs.gov/products/software/ blossom.shielgression quantile estimates
andT rankscore tests from the software used in simulations were compared with
estimates from the S-Plus scripts developed by R. Koenker
(www.econ.uiuc.edu~roger/research/home.hfon selected models both before and
after simulations were completed and found to agree to at least 7 decimal places.
4.1 Homogeneous Error Structure - Simple Regression
The simple 2 parameter regression mogelg, + X, + ¢ was evaluated for
Ho: 8, = 0 with 8, fixed at 6.0 ang#, = 0.0, 0.01, 0.05, 0.10, and 0.20. Estimated Type |
error ratesf; = 0.0) for the permutatioh test maintained nominal rates across all
conditions whereas thetest became excessively conservative for the 0.95 quantile for
n < 30 and for the 0.99 quantile forxn150 (Fig. 2.1). Results for the permutation test
were consistent with exact exchangeability for this hypothesis. Type | tarahe 0.75
guantile were nearly identical to those for the 0.50 quantile and, therefore, were not
graphed for this or subsequent simulations. Results were similar for all error

distributions for most conditions so only results of the lognormal error distribution are
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Figure 2.1. Estimated type | error ratesdor 0.05 (open) and 0.10 (solid);

for the permutatior (circles) and Chi-square distributédtriangles) rankscore
tests; for homogeneous lognormal error distribugidor Hy: B, =0 and H: 3, =0
in the modely = B, + B,X; + €, and H;: B; = 0 in the modey = 3, + B, X; + B, X, +
BX5 + B X, + BsXs + €; for 0.50, 0.90, 0.95, and 0.99 quantiles; andnfer20, 30,
60, 90, 150, and 300. 1,000 random samples wsd at each combination of
Ho:, n, and quantile.
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given in the Figures for this and subsequent simulations. Results for normal and
uniform error distributions are in Appendix 2.

It was possible to convel, to theF, ,  rankscore statistic and evaluate
probabilities with arF distribution withg andn - p degrees of freedom. Tlre
distribution approximation controlled Type | errors under the same conditions where
the Chi-square approximation of thetest statistic was well behaved and provided
some improvement for smaller samples and more extreme quantiles. Howefer, the
distribution did not maintain Type | errors as well as the permutation approximation at
smalln and more extreme quantiles. An example for the 0.99 quantile and lognormal
error distribution demonstrates that the permutdfioest had less discontinuous
probabilities that were more uniformly distributed than those for the distributional
approximations of andF, ,_, (Fig. 2.2).

The simple 2 parameter regression model also was evaluateg fyr=HD:with
p, fixed at 0.10 an@, = 0.0, 0.5, 1.0, 2.0, and 3.0. Type | error rates for the intercept
under then null hypothesig,(= 0.0) were better maintained by theéest than th&
test, which was always slightly liberal although not excessively so until 0.95 and 0.99
quantiles and n < 150 (Fig. 2.1). Théeest was slightly conservative for the 0.95
qguantile forn < 90 and for the 0.99 quantile fox 300.

Detailed exploration of the simulation results for the permutdiitest
indicated that there was additional sampling variation not accounted for by the
permutation distribution of the test statistic when the null model was constrained

through the origin. If the number of positive, negative, and zero residuals are denoted
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Estimated Type | error, Hy: 3,(0.99) =0
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Figure 2.2. Cumulative distributions of 1,000 exstted errors for permutation
approximation of thé& (solid line) rankscoref, , ., distribution approximation of
(square dot) the rankscore, and Chi-square disioib@pproximation ol rankscore
tests (dashes) forB3, = 0 for the 0.99 quantile, for= 30 and 90, for the lognormal
error distribution in the model= 3, + 3, X, + €.
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by N*, N°, N°, respectively, and ifl° = p - g under the null model, then there are at
mostnt negative residualdN( < nt < N”+ N9 and at mosn(1 - t) positive residuals
(N*< n[1 - 1)< N*+ N° when the null model includes an intercept (Koenker and
Bassett 1978, Koenker and Portnoy 1996). When the null model does not include an
intercept, the limits on the number of positive (negative) residuals exceeded these
values by amounts consistent with binomial random variation with success probability 1
- 1 (or T for negative residuals). Consequently, | modified a recently proposed double
permutation scheme for least squares regression through the origin (Legendre and
Desdevises In Press) for the quantile rankscore test as a possible remedyudhefval
the rankscorest), rather than being fixed across all permutations teere varied
such that the number ofr) with valuer for positive residuals (and conversely values
of t - 1 for negative residuals) was a binomial random variable with parameter 1-
The double permutatios test for the intercept had improved Type | error rates that
were similar to th@ test whem was not too small and< 0.99 but became excessively
conservative when= 0.99 and < 300 (Fig. 2.3).

Power for nonzero slope$, & 0.01, 0.05, 0.10, 0.20) was similar for tReand
T tests with a small improvement for theest (relative power = 0.98 - 1.35) at 0.90
and 0.95 quantiles at smallefFig.2.4). Thd- test provided effective power down to
n = 30 for 0.95 ana = 150 for 0.99 quantiles, whereas theest only provided
effective power down ta = 60 andh = 300, respectively, because of very conservative

Type | error rates at smaller sample sizes (Fig. 2.4). The drop in power when moving
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Figure 2.3. Cumulative distributions of 1,000 estied errors for permutatidn
(solid), double permutatio (square dots), antl(dashed) rankscore tests of
Ho By = 0; for 0.50, 0.90, 0.95, and 0.99 quantilesifer model =3, + ,X; + &;
for the lognormal error distribution amd= 90.
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Figure 2.4. Estimated power far= 0.05 for the permutatioR (solid) and
Chi-square distributed (open) rankscore tests; for homogeneous lognornraker
distributions; for H: B, = 0 and H: B, = 0 in the modey = 3, + B, X, + €; for
B,=0.0,0.5, 1.0, 2.0, and 3.0 and for= 0.0, 0.01, 0.05, 0.10, and 0.20; for 0.50,
0.90, 0.95, and 0.99 quantiles; and for 20 (circle), 30 (triangle), 60 (square),
90 (diamond), 150 (pentagon), and 300 (star). Ogpanbols often are hidden
behind solid symbols when equal. 1,000 random dampwere used at each
combination of effect sizen, and quantile.
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from 0.50 to 0.99 quantiles was greatest for the lognormal (Fig.2.4) and normal error
distributions (Appendix 2.3) and least for the uniform error distribution (Appendix 2.4),
which had a slight increase in power with increasing quantiles up to 0.85 160.
Power for nonzero intercept§, = 0.5, 1.0, 2.0, and 3.0) was slightly greater forlthe
compared to the test (Fig. 2.4). Similar results were obtained for the normal and
uniform error distribution (Appendices 2.3 and 2.4). Power was not estimated for the
double permutatiof test but should be similar to thdest.
4.2 Homogeneous Error Structure - Multiple Regression

The 6 parameter modai=5, + S, X, + X, + f X3+ B X ;+ B X + e, was
evaluated for g5 = 0 withg,= 36.0,4,=0.10,4,=-0.0058 ,= 2.0, angB ;= f 5=
0.0. The permutatioR test maintained better Type | error rates for smalfer the
0.95 and 0.99 quantiles than theéest (Fig. 2.1) The 6 parameter model also was
evaluated for K g, = 0 with,= 36.0,4,=0.10,4,=-0.005 ;= 0.05, ang ,=f =
0.0. Type I error rates were similar to those fgr/4= 0. Power was not investigated
for multiple regression models with homogeneous errors.
4.3 Heterogeneous Error Structure - Simple Regression
The 2 parameter regression model with heterogeneous grrofs+ X, + (1 X )e,
was evaluated with = 0.025, 0.05, and 0.10 for,H; = 0 with,= 6.0 ands; = 0.0 to
evaluate the effects of increasing heterogeneity on Type | error rates fankiseore
tests. Type | error rates were increasingly liberal for the permuta@onT tests (Fig.
2.5) with increasing heterogeneity, except thafltiest became excessively

conservative at < 60 for the 0.95 and at< 150 for the 0.99 quantile. Results were
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Figure 2.5. Estimated type | error ratesdor 0.05 (open) and 0.10 (solid);

for the permutatioifr (circles) and Chi-square distribut&dtriangles) rankscore
tests for H: B, = 0; for heterogeneous lognormal error distribugianthy = 0.025,
0.05, and 0.10 in the modgk 3, + B,X; + (1 +yX)); for 0.50, 0.90, 0.95, and 0.99
quantiles; and fon = 20, 30, 60, 90, 150, and 300. 1,000 random kzwgere
used at each combinationypi, and quantile.
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similar for normal and uniform error distributions (Appendices 2.5 and 2.6). Again,
convertingF, to anF ,,_, rankscore statistic and evaluating probabilities withthe
distribution andy andn - p degrees of freedom provided minor improvements in small
sample Type | errors compared to Theest, similar to simulations with homogeneous
errors. The= distributional approximation did not maintain Type | error levels as well
as the permutation approximation for théest with smalh and extreme quantiles.
Type | error rates when= 0.10, which corresponds to a 10-fold increase across the
domain ofX; sinceX, ranges 0 - 100, were such that nominal 95% confidence intervals
would have actual coverage of only 90%.

Weighted versions of the regression quantile estimates and the rankscore tests
for y= 0.05 were simulated using the known weights, (1 + 0.0%))?, in (2). Type |
error rates were improved for the weighted versions of both tests (Fig. 2.6B) compared
to those for the unweighted tests (Fig. 2.5), except for the 0.99 quantile and smaller
The permutatioifr test was always slightly more liberal than Thiest because the
weighted estimate for the null model is forced through the origin. Here, again the
double permutatiof test provided improved Type | errors over the permutatitest
except at the 0.99 quantile an& 300 (Fig. 2.6A), where none of the weighted
statistics worked well.

The H,:5,= 0 also was evaluated in the 2 parameter regression model with
heterogeneous errorss= f, + 5, X, + (1 #X))e, withy = 0.05,4,= 0.10, angd ,= 0.0,
0.5, 1.0, 2.0, and 3.0. THetest maintained Type | error ratgs € 0.0) slightly better

than the permutatioR test similar to simulations for homogenous errors, with error
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Figure 2.6. (A) Cumulative distributions of 1,086timated errors for permutatién
(solid), double permutatiofR (square dots), antl(dashed) rankscore tests qf: i, = O;

for 0.50, 0.90, 0.95, and 0.99 quantiles; for tleeghted modelvy = w3, + Wi, X; +

w(1 +yX,)e with y=0.05 andwv = (1 +yX,)?; for the lognormal error distribution and
n=90. (B) Estimated type | error rates o= 0.05 (open) and 0.10 (solid); for the
permutationF (circles) and Chi-square distributédtriangles) rankscore tests for

Ho: B, = 0; for the same weighted model with lognormadedistributions; for 0.50, 0.90,
0.95, and 0.99 quantiles; and for 20, 30, 60, 90, 150, and 300. 1,000 random ksmp
were used at each combinationmé&ind quantile.
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rates of the latter test becoming extremely liberal for the 0.95 and 0.99 quanti& and
90. Type | error rates for testing the intercepf fi{= 0) with unweighted statistics
deviated less from nominal rates compared to testing the slgpg, 640) under

similar heterogeneous error structures, providing reasonable Type | errdorates

n> 90. The double permutatidntest was not evaluated for this set of conditions but
would be expected to provide similar improvements over the permukatest as it

did when error distributions were homogeneous.

Power forg, = 0.01, 0.05, 0.10, and 0.20 was simulated f00.05 for the
unweighted rankscore tests because part of the motivation for using the rankssore test
was to avoid having to model error heterogeneity in applications. Clearly, slightly
liberal Type | error rates for = 0.05 will inflate power estimates for the unweighted
rankscore tests. Power for the unweigtfeahdT tests was similar, except for smaller
n for 0.95 and 0.99 quantiles, where their Type | error rates had become excessively
liberal or conservative, respectively (Fig. 2.7). Similar results were ottton¢he
normal and uniform error distributions (Appendices 2.7 and 2.8). Powgy $00.5,

1.0, 2.0, and 3.0 was slightly greater for Theompared to the test (Fig. 2.7,
Appendices 2.7 and 2.8), similar to homogeneous error distribution models.

4.4 Heterogenous Error Structure - Multiple Regression

The 6 parameter modai=5, + S, X, + B X, + f X3+ X+ B X <+ (1 X )e, with

y = 0.05 was evaluated for the full model hypothesisfi= f,=p;=8,=Fs=0 forg,
fixed at 36.0 an@, =8, =p,=8,=B5= 0 for Type | error rates, and wijgh = 0.10,

0.15, 0.20, 0.25 for power. Type | error rates were well maintained by both tests until
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Figure 2.7. Estimated power far= 0.05 for the permutatiof (solid) and

Chi-square distributed (open) rankscore tests; for heterogeneous lognoemat
distributions; for H: B, = 0 and H: 3, = 0 in the modey = 3, + 3,X; + (1 + 0.0X,)¢;

for B, =0.0, 0.5, 1.0, 2.0, and 3.0 and fr= 0.0, 0.01, 0.05, 0.10, and 0.20; for 0.50,
0.90, 0.95, and 0.99 quantiles; andiior 20 (circle), 30 (triangle), 60 (square),

90 (diamond), 150 (pentagon), and 300 (star). Ggyembols often are hidden

behind solid symbols when equal. 1,000 random $esnpere used at each
combination of effect sizen, and quantile.
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n < 30 for the 0.95 quantile amd< 150 for the 0.99 quantile, where theest became

liberal and thel test became conservative (Fig. 2.8, Appendices 2.9 and 2.10). Power
estimated with 1 of the 5 slope parametggsdllowed to be nonzero was similar for

the rankscore tests (Fig. 2.10). Power was low for the 0.95 quantile to nonexistent for
the 0.99 quantile. Power for this and other conditions evaluated for the multiple
regression models was only evaluated for the lognormal error distribution to reduce the
amount of computing and reporting.

Type | error rates for subhypotheses involving continuous variables in the 6
parameter model with= 0.05 were evaluated for,H3; = 0 and H ;== 0 withf5,
=36.0,4, = 0.10,8,=-0.0058,= 2.0, ang,= = 0.0. The permutatioh test
maintained Type | errors well across all sample sizes and quantileg farHD;
whereas thd@ test became excessively conservative for smaler 0.95 and 0.99
quantiles (Fig. 2.8). Type | error rates were slightly more liberal for §hg;i =0
(Fig. 2.9) compared to the,Hp; = 0 (Fig. 2.8) for lognormal as well as normal and
uniform error distributions (Appendices 2.9 - 2.12). Again, the permut&ttest
maintained Type | error rates better for smaileand 0.95 and 0.99 quantiles compared
to theT test, which became excessively conservative. Power,fg, B O was
estimated withp, = 0.10, 0.15, 0.20, and 0.25 for the lognormal error distribution.
Power was similar for the tests and became exceedingly low to nonexistent for 0.90 -
0.99 quantiles (Fig. 2.10).

Subhypotheses involving categorical predictors in the 6 parameter model were

evaluated for 5l §,=0and H $,=85= 0 withp ~ 36.0,5,= 0.10,4 ,= -0.005,
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Figure 2.8. Estimated type | error ratesdor 0.05 (open) and 0.10 (solid);

for the permutatior (circles) and Chi-square distribut&dtriangles) rankscore
tests for H: B, =B,=B3=B,=Bs =0, Hy: B3=0, and H: B, = O; for heterogeneous
lognormal error distributions witih= 0.05 in the modey = 3, + B, X; + B, X, + B3X5

+ B X+ BsXs + (1 +yXy)g; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for

n= 20, 30, 60, 90, 150, and 300. 1,000 random &zsmnwpere used at each
combination of H, n, and quantile.
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Figure 2.9. Estimated type | error ratesdor 0.05 (open) and 0.10 (solid);

for the permutatiorir (circles) and Chi-square distribut@dtriangles) rankscore
tests for H: B3 =B5 = 0 and H: 3, = B5 = O for heterogeneous lognormal error
distributions withy = 0.05 in the modey = B, + B, X; + B, X5+ B3Xgt+ B X, + BsXs

+ (1 +yXye; and for H: B, = 0 in the modely = B, + 3, X; + B, X, + B3Xgt+ B X, +
BsXs wherey has a Poisson distribution; for 0.50, 0.90, 0.91] @.99 quantiles; and
for n =20, 30, 60, 90, 150, and 300. 1,000 random $esmnpere used at each
combination of H, n, and quantile.
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Ho: B, = O; for heterogeneous lognormal error distribugianithy = 0.05 in the model
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guantiles; and fon = 20 (circle), 30 (triangle), 60 (square), 90 (doard),150
(pentagon), and 300 (star). Open symbols oftemialden behind solid symbols when
equal. 1,000 random samples were used at eachiatiob of H), n, and quantile.
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S, =0.05, angb, = = 0.0. TheT test became excessively conservativenfer90 for

the 0.95 quantile and for< 150 for the 0.99 quantile compared to the permutdtion
test (Figs. 2.8 and 2.9). Type | error rates fprfz= 0 (Fig. 2.8) were slightly more
liberal than for H B, == 0 (Fig. 2.9) for both tests for lognormal as well as normal
and uniform error distributions (Appendices 2.9 - 2.12). Power was evaluated for the
subhypothesis Hj, = 0 forg,= 1.5, 3.0, 6.0, and 12.0 and the lognormal error
distribution. Estimates of power were similar for the tests with a slighh&ayafor

the permutatiofr test for smallen and the 0.95 and 0.99 quantiles (Fig.2.10).

The H,:4,= 0 also was evaluated for a variant of this 6 parameter model where
po=3.0,4,=0.10,4,=-0.00054,= 0.05, angt ,= ;= 0.0 andy having a Poisson
distribution with mean and variance specified by the regression function. As elsgwher
the permutatiorr test maintained better error rates for smdér the 0.95 and 0.99
guantiles than the test (Fig. 2.9). For this model, there was no evidence that the tied
integer values associated with the Poisson distribution caused any unusual problems
with the rankscore tests.

TheF distribution approximation of thig, ,_, rankscore statistic maintained
Type | error rates well under similar sample sizes and quantiles where thguane
distributional approximation of thE rankscore statistic worked well when testing
subhypotheses in multiple regression models. However, probabilities fey the
statistic and those provided by the permutation approximation &, tt@tistic were
closer to nominal error rates for smathnd more extreme quantiles than those for the

Chi-square distributional approximation of thetatistic. An example for HS, ==
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0 for the lognormal error distribution and the 0.95 quantile is in Figure 2.11.
5. Example Application
| constructed confidence intervals for regression quantile estimates of Lahontan
cutthroat trouDncorhynchus clarki henshadensity (trout m ) as a function of stream
channel morphology (width:depth ratio) for 13 small streams in Nevada sampled over 7
years (Dunham et al. 2002). Width:depth ratio is a measure that integrates stream
channel characteristics thought to be related to small stream integrithasdjgh
populations and is easily measured for assessing fish habitat conditions and land use
impacts over large regions. Lahontan cutthroat trout are a threatened speciembf spe
interest to federal land management agencies.

Here | considered the nonlinear mogel expf3, + 5,X; + ¢), wherey is trout
m™* andX, is width:depth ratio, fon = 71 observations of streams for 1993 to 1999
(Dunham et al. 2002). The model was estimated in the linear foym Mg + . X, + ¢
and estimates for selected regression quantiles were plotted by exponetaibtng
transform to the nonlinear form (Fig. 2.12). Estimates for all quantiles weredpstie
step function with 90% confidence intervals for 19 quantiles between 0.05 and 0.95 by
increments of 0.05 (Fig. 2.13). Interval endpoints were estimated from a linear
interpolation between hypothesized parameter values that tesd statistics that
bracketed the standard normal test statistic = 1.645 associated=itl10 (Koenker
1994) as was done by Dunham et al. (2002). Here | also provide confidence intervals

for estimates of, that were not provided by Dunham et al. (2002).
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Figure 2.11. Cumulative distributions of 1,000rested errors for permutation
approximation of thé& (solid line),F, , ., distribution approximation of (square dot)
theF, and Chi-square distribution approximationfdfdashes) rankscore tests

for Hy: B, = Bs = 0 for the 0.95 quantile, for= 30 and 90, for the lognormal error
distribution in the mode} = B, + X, + BoXo+ BaXst BaXs+ BsXs+ (1 +yXE.
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Confidence intervals also were constructed basedwvanting the permutatioR
test for the same quantiles (Fig. 2.13). The fpds$ioundary values for the estimated
confidence interval endpoints were obtained froenlithear programming
implementation used to construct intervals by itimgrtheT test statistic (Koenker
1994). These values were then used as hypothgsizacheter values gfr) in the
transformatiory - X,&(t) to test the K B,(t) = &(t) with (6), wheref, was eithep, or
[, depending on the parameter being tested. Werasedl = 100,000 permutations to
compute probabilities for the tests associated with confidence interval endpoints.
Similar to theT test inversion approach, tketest inversion approach had confidence
interval endpoints that were discontinuous in probabilities. | used a linear interpolation
based on th€-values to estimate the endpoints rather than the more conservative
approach of using the closest estimated confidence interval endpoiit with This
had a similar effect to the linear interpolation for Thiest. For example, the
hypothesized parameter values that bracketed the lower 90% confidence interval
endpoint for the 0.90 quantile 8y were&(0.90) = -0.03374 wit? = 0.0396 and
£(0.90) = -0.03346 witl? = 0.2980. No value between these parameter values yielded
different rankscore test statistics. The linear interpolated intervatovaputed as
-0.03374 + [-0.03346 - -0.03374| x ((0.1000 - 0.0396)/(0.2980 - 0.0396)) = -0.03367.
TheT test inversion approach has standard normal test statistics of 2.047 and 1.241
associated with(0.90) = -0.03374 an&(0.90) = -0.03346, respectively. Linear
interpolation was used to obtain the estimated endpoint (-0.03361) for the standard

normal test statistic = 1.645 associated with0.10 (Koenker 1994). There was little

60



1.5

Trout m?
-
o

o
&

0.0

Width:Depth

Figure 2.12. Lahontan cutthroat trout'mnd width:depth ratios for 13 small
streams sampled 1993-1998<71); exponentiated estimates for 0.90, 0.50,

and 0.10 regression quantiles (solid lines) fortiwelel Iny = 3, + 3,X;+ €; and
exponentiated weighted least squares (WLS) estinfateean and 0.90 percentile
(WLS 0.9) estimate for the modelyw = B+ B, X, + (Yo - ViX)E)W,

w = (1.310 - 0.01X,)* (dotted lines). Dashed lines are nonsimultaneaar{d
simultaneous (b) 1-sided upper 90% confidencevatsifor 0.90 regression quantile
for selected width:depth ratios between 5 and3pper dotted line (c) is
nonsimultaneous 1-sided upper 90% confidence intéov®.90 percentile

estimate based on the weighted least squares model.
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Figure 2.13. Solid lines are step functions foinestes of3, andp, by
quantiles [0, 1] in the unweighted modeMe 3, + B,X; + € and in the
weighted model (Iy)w = (B, + BX; + (Vo - VX)W, w= (1.310 - 0.01X,)%,

for n=71 observations of Lahontan cutthroat trodtand width:depth ratios.

Pointwise 90% confidence intervals based on invgttieT rankscore test
(triangles) and inverting the permutatiémankscore test (cirlcles) were
constructed with linear interpolation between eated endpoints.
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difference in the estimated 90% confidence intervals acreg6.05, 0.95] for the
permutatior- andT test inversion approaches, with slightly narrower intervals for the
permutatiorf inversion approach for some quantiles (Fig. 2.13). Pushing interval
estimation foB, to a slightly more extreme quantites 0.98, the permutatiof test

based interval (-0.0313, -0.0299) was a third of the length 4f test based interval
(-0.0324, -0.0293), although both intervals were very short and perhaps stretched the
bounds of reliability.

Weighted regression quantile estimates and associated intervals based on test
inversion were constructed by using the unweighted estimates (Fig. 2.13) as a basis for
developing a weighting function. The decrease in estimajgsnaifrors the increase in
estimates of, with increasing, suggesting a linear location-scale model with error
variation of the formy, - y,X, as a reasonable approximation. The weight function was
estimated by the average pairwise difference between the 76 regressiore quantil
estimates foby(t ) to estimate, and forb,(t ) to estimate,. Multiresponse
permutation procedure routines were used for computing the average pairwise
differences (Mielke and Berry 2001). The estimated standard deviation function was
1.310 - 0.01X,, and its reciprocal provided weights for the weighted regression
quantile estimate (2), which was implemented by multiplying all variables imdlke!
by the weights and then using the regression quantile estimator (1F artud tests
produced linear interpolated 90% confidence intervals that differed most for weighted

estimates of, for the lower quantiles (Fig. 2.13). The overall pattern and width of
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intervals for the weighted estimates were not greatly different fromuheieighted
counterparts, which is consistent with the rather weak (<1 standard deviation change)
pattern of heterogeneity across width:depth ratios. Both weighted and unweighted
confidence bands supported an interpretation that increasing stream width:depth ratios
from 15 to 45 decreased the highest 20% of trout densitie®.80) by 11 to 64%
[exp(-0.004 x 30) = 0.887 and exp(-0.034 x 30) = 0.361].

A 1-sided upper 90% confidence band for the 0.90 quantile that was not
simultaneous iX; was estimated for 11 equally spaced width:depth values between 5
and 55 corresponding to the range of ratios in the sample (Fig. 2.12). This was done by
forming confidence intervals fg, with a 2-sidedr = 0.20 after shifting the
width:depth ratios by the 11 selected values. For example, shifting the width:depth
ratios by subtracting 20 implies that the interval constructefl, fon the transformed
data was now an interval for width:depth ratio = 20 rather than for width:depth ratio =
0. Obviously, more values of width:depth ratio could have been used to obtain a
smoother band. For comparison, & 90 percentile line based on a weighted least squares
regression of the log transformed trout densities and corresponding nonsimultaneous 1-
sided upper 90% confidence intervals were estimated based on Vardeman (1992) and
Gerow and Bilen (1999). Both the quantile regression and weighted least squares
intervals are interpreted as upper tolerance intervals for an individual value of
width:depth (Vardeman 1992), but the latter estimates assumed a normal distribution
for the log transformed data, resulting in slightly wider intervals (Fig. 2.12). Arlow

confidence interval (e.g., for 0.10 quantile) was of little interest with this datavas
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effectively O for all width:depth ratios.

Simultaneous intervals 4, for the 0.90 quantile regression were estimated by
emulating computations for the Working-Hotelling procedure for simultaneous
confidence bands (Neter et al. 1996:156-157). The simultaneous intervals were slightly
wider than the nonsimultaneous quantile rankscore intervals but were narrower than the
nonsimultaneous intervals based on the weighted least squares estimates (Fig. 2.12).
The Working-Hotelling procedure used (F¢0.80, 2, 69f)° = 1.815 as a multiplier for
the standard error of a predictedt a specifie, implying that any individual interval
required aru = 0.0738 for a simultaneous 2-tailed 0.20. The simultaneous
confidence band in Figure 2.12 is interpreted as an upper 90% tolerance band for 90%
of future observations of trout densities. In repeated random sampling we would expect
90% of samples to have 90% of trout densities within the interval estimates for all
width:depth ratios. Although | used tlgankscore test inversion approach for
constructing the confidence bands on the 0.90 quantile, this procedure also could have
been done with the permutatibrtest inversion procedure. A simultaneous confidence
band also could be constructed based on the weighted least squares estimates (Turner
and Bowden 1977, Gerow and Bilen 1999) but would be even wider than the
nonsimultaneous band.

6. Discussion
The permutatioir rankscore test maintained Type | errors better and had more power
than the Chi-squar€ rankscore test for model combinations of small samples, more

extreme quantiles, and more parameters. The permutation test maintainedrigyse | e
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better at 26 n < 30 for 0.95 and 2@ n < 90 for 0.99 quantiles for 2 parameter
models and at 30 n < 90 for 0.95 and 1560 n < 300 for 0.99 quantiles for 6
parameter models, depending on the number of parameters being tested. This was true
regardless of the error distribution. My example application with the Lahontan
cutthroat trout data suggested that these differences may not always becainguffi
magnitude to affect the interpretation of an analysis when quantiles used are not too
extreme (e.g., 0.05 t < 0.95). When estimating models for more extreme quantiles
(e.g.,t = 0.99), fairly large samples & 300) will be required for models with more
than just a few parameters to ensure reliable confidence intervals by esthePtaver
to detect the alternative hypothesis was low for more extreme quantiles (0.95 and 0.99)
in the low density tails of the lognormal and normal error distributions. This rasults i
wider estimated confidence intervals based on test inversion. This was egpeciall
problematic for testing subhypotheses in models with more parameterg. The
distribution approximation of thi, ,_, form of the rankscore statistic offered some
advantages over the Chi-square distribution approximation df thekscore statistic
at smalln and more extreme quantiles when testing subhypotheses in multiple
regression models. But there was greater improvement by going to the permutation
approximation of thé& rankscore statistic, at least for parameters other than the
intercept.

The double permutation scheme (Legendre and Desdevises In Press) provided
better Type | errors for the test when null models were forced through the origin as

when testing the intercept. However, additional refinements of the double permutation
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scheme need to be investigated to see whether this approach can be made to work as
well for more extreme quantiles (e.g., 0.99) and small samples. This will beadlgpeci
important in applications of permutation tests with weighted models.

The rankscore tests were not immune to the effects of heterogeneity, although
this was a more serious performance issue for the simple 2 parameteliopgresels
than for the 6 parameter multiple regression models. Some adjustment for error
heterogeneity will often be desirable for the regression quantile ranksdsrartds
confidence intervals. My simulation results suggested that when there wéswaria
across an independent variable >2.5 standard deviations, tests and confidence interval
estimates might benefit from using weighted estimates and rankscore testsl a
simple pairwise difference approach based on the initial unweighted estiorates f
estimating weights in the example application. Other approaches for asgimati
weights include regressing absolute values of residuals from an unweightetidit of t
0.5 quantile on the independent variables for linear location-scale models (Zhou and
Portnoy 1998) and the sparsity estimation approach for more general heteroscedastic
models (Koenker and Machado 1999).

One of the potential benefits of analyzing data with regression quantiles is to
focus attention on the utility of prediction and tolerance intervals in the linear model
(Vardeman 1992). My simulations established the validity of the quantile rankscore
tests for constructing confidence intervalsfgrand, therefore, by implication for other
values ofX =x. Inverting tests on appropriate regression quantile estimates allows

construction of prediction and tolerance intervals without assuming a specific form of
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the error distribution. Zhou and Portnoy (1998) provided alternative order statistic
based approaches to constructing such intervals with regression quantiles. The quantile
regression based tolerance intervals estimated in my example applicatosiiglly
narrower than comparable intervals based on weighted least squares edtabates t
assumed a normal error distribution. Parametric distributional approachesifg set
prediction and tolerance intervals should provide narrower intervals only when the
distributional assumptions are well founded. This will not be common in most
ecological and biological applications. Recall that the assumed parametric er
distributional form is of less consequence when estimating parameters andsnterva
associated with the conditional mean than it is when trying to estimate pasamete
associated with other parts of the probability distribution, as is required for coimgtruc
prediction and tolerance intervals.
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Appendix 2

Simulation Results for Normal and
Uniform Error Distributions
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Appendix 2.1. Estimated type | error ratesdor 0.05 (open) and 0.10 (solid);
for the permutatio (circles) and Chi-square distribut&dtriangles) rankscore
tests; for homogeneous normal error distributidasH,: Bo=0and H: 3, =0

in the modely =3, + B,X; + €, and H: B; = 0 in the modey = B, + B, X; + B, X, +
BgXs + BoX4 + BsXs + €; for 0.50, 0.90, 0.95, and 0.99 quantiles; andnfer20, 30,
60, 90, 150, and 300. 1,000 random samples wsad at each combination of
Ho:, n, and quantile.
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Appendix 2.2. Estimated type | error ratesdor 0.05 (open) and 0.10 (solid);
for the permutatio (circles) and Chi-square distribut@dtriangles) rankscore
tests; for homogeneous uniform error distributidios;H,: B, =0 and H: 3, =0

in the modely = 3, + 3,X; + €, and H;: B3 = 0 in the modey = B, + B, X, + B, X, +
BaXs + BX, + BsXs + €; for 0.50, 0.90, 0.95, and 0.99 quantiles; andnfer20, 30,
60, 90, 150, and 300. 1,000 random samples wsed at each combination of
Ho:, n, and quantile.
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Appendix 2.3. Estimated power far= 0.05 for the permutatiok (solid) and
Chi-square distributed (open) rankscore tests; for homogeneous normal error
distributions; for H: B, = 0 and H: B, = 0 in the modey = 3, + B, X, + &; for
B,=0.0,0.5, 1.0, 2.0, and 3.0 and fr= 0.0, 0.01, 0.05, 0.10, and 0.20; for 0.50,
0.90, 0.95, and 0.99 quantiles; and for 20 (circle), 30 (triangle), 60 (square),
90 (diamond), 150 (pentagon), and 300 (star). Ofenbols often are hidden
behind solid symbols when equal. 1,000 random damwere used at each
combination of effect sizen, and quantile.
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Appendix 2.4. Estimated power far= 0.05 for the permutatioR (solid) and
Chi-square distributed (open) rankscore tests; for homogeneous uniformrerro
distributions; for H: B, = 0 and H: B, = 0 in the modeYy = 3, + B,X; + ¢; for
B,=0.0,0.5,1.0, 2.0, and 3.0 and for= 0.0, 0.01, 0.05, 0.10, and 0.20; for 0.50,
0.90, 0.95, and 0.99 quantiles; and for 20 (circle), 30 (triangle), 60 (square),
90 (diamond), 150 (pentagon), and 300 (star). Ofpenbols often are hidden
behind solid symbols when equal. 1,000 random damywere used at each
combination of effect sizen, and quantile.
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Appendix 2.5. Estimated type | error ratesdor 0.05 (open) and 0.10 (solid);

for the permutatior (circles) and Chi-square distribut&dtriangles) rankscore
tests for H: B, = 0; for heterogeneous normal error distributiomts w= 0.025, 0.05,
and 0.10 in the modegl= 3, + 3, X, + (1 +yX))s; for 0.50, 0.90, 0.95, and 0.99
quantiles; and fon = 20, 30, 60, 90, 150, and 300. 1,000 random ksmpere
used at each combinationypin, and quantile.
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Appendix 2.6. Estimated type | error ratesdor 0.05 (open) and 0.10 (solid);

for the permutatiof (circles) and Chi-square distribut&dtriangles) rankscore
tests for H: 3, = O; for heterogeneous uniform error distributi@nth y = 0.025, 0.05,
and 0.10 in the modgl= 3, + 3, X; + (1 +yX,)g; for 0.50, 0.90, 0.95, and 0.99
guantiles; and fon = 20, 30, 60, 90, 150, and 300. 1,000 random Esmwpere

used at each combinationyh, and quantile.
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Appendix 2.7. Estimated power far= 0.05 for the permutatioR (solid) and
Chi-square distributed (open) rankscore tests; for heterogeneous normai err
distributions; for H: B, = 0 and H: 3, = 0 in the modey = 3, + 3,X; + (1 + 0.0X,)¢;

for B, =0.0, 0.5, 1.0, 2.0, and 3.0 and fr= 0.0, 0.01, 0.05, 0.10, and 0.20; for 0.50,
0.90, 0.95, and 0.99 quantiles; andiior 20 (circle), 30 (triangle), 60 (square),

90 (diamond), 150 (pentagon), and 300 (star). Ggyembols often are hidden

behind solid symbols when equal. 1,000 random $esnpere used at each
combination of effect sizen, and quantile.

82



0.50

0.90

0.05

Power fora

0.95

1

Appendix 2.8. Estimated power far= 0.05 for the permutatiok (solid) and
Chi-square distributed (open) rankscore tests; for heterogeneous uniforor er
distributions; for H: B, = 0 and H: 3, = 0 in the modey = 3, + 3,X; + (1 + 0.0X,)¢;

for 3,=0.0, 0.5, 1.0, 2.0, and 3.0 and 3= 0.0, 0.01, 0.05, 0.10, and 0.20; for 0.50,
0.90, 0.95, and 0.99 quantiles; andrior 20 (circle), 30 (triangle), 60 (square),

90 (diamond), 150 (pentagon), and 300 (star). Ggyembols often are hidden

behind solid symbols when equal. 1,000 random $esnpere used at each
combination of effect sizen, and quantile.
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Appendix 2.9. Estimated type | error ratesdor 0.05 (open) and 0.10 (solid);

for the permutatioiir (circles) and Chi-square distribut@&dtriangles) rankscore
tests for |: B, =B,=B3=B,=Bs=0, Hy: B3 =0, and H: B, = O; for heterogeneous
normal error distributions witli= 0.05 in the modey = 3, + B, X; + B, X, + BsXs

+ B, X+ BsXs + (1 +yX))g; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for

n= 20, 30, 60, 90, 150, and 300. 1,000 random &zsnpere used at each
combination of K, n, and quantile.
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Appendix 2.10. Estimated type | error ratesdor 0.05 (open) and 0.10 (solid);
for the permutatioiir (circles) and Chi-square distribut@dtriangles) rankscore
tests for |: B, =B,=B3=B,=Bs=0, H,: B;=0, and H: B, = O; for heterogeneous
uniform error distributions witly = 0.05 in the modey = 3, + B, X; + BoX, + X3

+ B, X, + BsXs + (1 +yXy)e; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for

n= 20, 30, 60, 90, 150, and 300. 1,000 random &=swpere used at each
combination of K, n, and quantile.
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Appendix 2.11. Estimated type | error ratesdor 0.05 (open) and 0.10 (solid);
for the permutatior (circles) and Chi-square distribut@dtriangles) rankscore
tests for H: B; =B =0 and H: B, = Bs = 0 for heterogeneous normal error
distributions withy = 0.05 in the modey = B, + B, X; + BoX, + BgXs+ B X, + BsXs

+ (1 +yX)g; for 0.50, 0.90, 0.95, and 0.99 quantiles; andrfer 20, 30, 60, 90,
150, and 300. 1,000 random samples were usegcat@mbination of

n, and quantile.
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Appendix 2.12. Estimated type | error ratesdor 0.05 (open) and 0.10 (solid);
for the permutatior (circles) and Chi-square distribut@dtriangles) rankscore
tests for H: B;=B5 =0 and H: B, = Bs = 0 for heterogeneous uniform error
distributions withy = 0.05 in the modey = 3, + B,X; + B,X,+ BXg+ By X, + BsXs

+ (1 +yXy)g; for 0.50, 0.90, 0.95, and 0.99 quantiles; andnfer20, 30, 60, 90,
150, and 300. 1,000 random samples were useacht@mbination of |

n, and quantile.
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Chapter 3
A Drop In Dispersion Permutation Test
for Regression Quantile Estimates
Abstract A drop in dispersiork-ratio like permutation test for hypothesis testing and
constructing confidence intervals for linear quantile regression estirfatas< 1)
was evaluated for conditions relevant to ecological investigations of animal respons
to their physical environment. Conditions evaluated included models with 2 - 6
predictors, moderate collinearity among predictors, homogeneous and heterogeneous
errors, small to moderate samplas=(20 - 300), and central to upper quantiles (0.50 -
0.99). The drop in dispersidntest maintained Type | errors well for homogeneous
error distributions and provided greater power than rankscore tests, which don’t use the
magnitude of the residuals in their construction. Type | errors fd tlest were
slightly liberal for weighted estimates of heterogeneous error distributitimsD test
required largen at more extreme quantiles than the rankscore tests to maintain
reasonable Type | error rates and had more liberal Type | error rates whem testi
subhypotheses in multiple regression models. Confidence intervals on paramegers wer
constructed based on test inversion for an example application relating trout siéasitie

stream channel width:depth.



1. Introduction
Estimating the quantiles (Ot < 1) of a response variable conditional on some set of
covariates in a linear model has many applications in the biological and ecological
sciences (Terrell et al. 1996, Scharf et al. 1998, Cade et al. 1999, Cade and Guo 2000,
Haire et al. 2000, Eastwood et al. 2001, Dunham et al. 2002). Quantile regression
models allow the entire conditional distribution of a response varablée related to
some covariateX, providing a richer description of functional changes than is possible
by focusing on just the mean (or other central statistics), yet requiring minimal
distributional assumptions (Koenker and Bassett 1978, 1982, Koenker and Machado
1999). Quantile regression estimates are especially enlightening fmmshas
involving heterogeneous responses where by definition rates of change are not the same
across all parts of the response distribution. Many ecological applications ofeuantil
regression have focused on estimating some upper quantiles to characterig@effec
limiting factors (Terrell et al. 1996, Scharf et al. 1998, Cade et al. 1999, Cade and Guo
2000, Haire et al. 2000, Eastwood et al. 2001, Huston 2002). Other applications (Allen
et al. 2001, Dunham et al. 2002) have used estimates across the entire [0, 1] interval of
quantiles as a flexible method of characterizing effects associated vatbhdeneous
distributions.

Inference methods with asymptotic validity for linear quantile regression smodel
based on estimates of the covariance matrices (Koenker and Bassett 1978, 1982,
Koenker and Machado 1999) require estimates of the reciprocal of the error density

function at the quantile of interes(F*(0)). These methods often perform poorly at
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smaller sample sizes (Koenker 1987, Buchinsky 1991) and the asymptotic theory
becomes suspect at more extreme (>0.7 and <0.3) quantiles (Chernozhukov and
Umantsev 2001). Koenker (1994) introduced the idea of constructing confidence
intervals by inverting a quantile rankscore test (Gutenbrunner et al. 1993), which does
not require estimating the sparsity function, as an alternative inference peotieatur
performed well under linear heteroscedastic regression models and snmaikr sa
sizes. Here | consider a drop in dispersiematio like test that is evaluated with
permutation arguments based on modifications of the least absolute deviation
regression test of Cade and Richards (1996). This test also avoids the sparsity
estimation issue but unlike the quantile rankscore tests (Koenker 1994, Chapter 2) it
uses the magnitude of the residuals in its construction, potentially providing greater
power and shorter confidence intervals.

Here | evaluated performance of the drop in dispersion permutation test for
central to extreme quantiles, a range of error structures, small to modenate sizes,
and model forms likely to be encountered in ecological applications where the objective
is to estimate some organism’s response to its environment. Weighted formsest the t
based on weighted quantile regression estimates were evaluated for heterogeneous
distributions. The drop in dispersion permutation test was applied to a quantile
regression analysis of Lahontan cutthroat tr@rtdorhynchus clarki henshawi
response to variations in their stream habitat, expanding on the previous analyses of

Dunham et al. (2002).
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2. Quantile Regression M odel
Thet"regression quantile (0t < 1) for the heteroscedastic linear location-scale model
y = Xp +Teis defined a®, (t|X) = Xp(z) andp(z) = p + F,*(x)y; wherey is ann x 1
vector of dependent responsgss ap x 1 vector of unknown regression parametgrs,
is ann x p matrix of predictors (first column consists of 1's for an intercept tgrim)a
p x 1 vector of unknown scale paramet&rss a diagonah x n matrix where the
diagonal elements are thecorresponding ordered elements ofthe 1 vectorXy
(diag(Xy)), € is ann x 1 vector of random errors that are independent and identically
distributed (iid), and~" is the inverse of the cumulative distribution of the errors
(Koenker and Bassett 1982, Buchinsky 1991, Gutenbrunner arittdwael 992,
Koenker and Machado 1999). Homoscedastic regression models are a special case of
the linear-location scale model wher (1,0,...,0) andQ,(t|X) = XB(z), p(z) =B +
(F.*(),0,...,0), where all parameters other than the interggptirf p(z) are the same
for all t. More general forms of heteroscedastic errors can be accommodated with
regression quantiles (Koenker 1997, Koenker and Machado 1999) but were not
considered here.

The restriction imposed oR, to estimate regression quantiles is thet a
quantile ofy - Xp(z) conditional orX equals OF,*(t| X) = 0. Estimatedy(t), of B(t)

are solutions to the following minimization problem:

n P
min[d_ p,(y; -3 bx;)]
i=1 j=0
where p_(€) =€(t - 1(e<0)),
and I(-) is the indicator function

(1)
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The estimating equations in (1) yield primal solutions in a modification of the B&roda

and Roberts (1974) simplex linear program for any specified valuéaienker and

d'Orey 1987). With little additional computation the entire regression quantile proces

for all distinct values of can be estimated (Koenker and d'Orey 1987, 1994).
Consistent estimates with reduced sampling variation for heteroscedeesic li

models can be obtained by implementing weighted versions of the regression quantile

estimators, where weights are based on the sparsity function at a given quantile and

covariate value (Koenker and Portnoy 1996, Koenker and Machado 1999). In the linear

location-scale model this simplified to usingrar n weights matrixW =TI, where

thep x 1 vector of scale parametgra/ould usually have to be estimated in

applications (Gutenbrunner and Jtkeva 1992, Koenker and Zhao 1994, Koenker and

Machado 1999). The weighted regression quantile estimates then are given by

n p
min[}_ p,(y,- Y b, x;)wi]
i=1 j=0
where p_(€) = €(t - 1(e<0)), (2)
W, is a weight
and I(-) is the indicator function
which is easily implemented by multiplyipgandX by W and then using the
unweighted estimator (1).
3. Test Statistics
The drop in dispersioD test was based on a modification of the drop in dispersion

permutation test developed for least absolute deviation (LAD) regression (Cade and

Richards 1996). The reduced parameter modeX. &(t) = X,B,(tr) + g, is
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constructed by partitioning = (X,, X,), whereX, isn x (p - q) andX, isn x g; and by
partitioningp = (B,, B,), wherep,(t) is a p - g) x 1 vector of unknown nuisance
parameters under the null apgir) is aq x 1 vector of parameters specified by the null
hypothesis B B,(t) = &(t) (frequentlyg(t) = O) for the full parameter modgl=X,B,(1)
+ X, B,(1) + I'g; andy, I', ande are as above. The sum of weighted absolute deviations
minimized in (1) for the weighted version of the full parameter matlgl= WX B,(1)
+ WX,B,(t) + WI'e, whereW is a weights matrix as in (2), are denoted SAdragd
for the reduced parameter mod&ly - WX,&(t) = WX B,(t) +WT'e, corresponding to
the restrictions under the null hypothesis Bi(r) = (t) are denoted SARw). The
test statistic

D, = (SARw() - SAFw(r))/SAFw(T), (3)
was evaluated by permuting the weighted residuals under the null model to the
weighted full model matrixVX, similar to the Cade and Richards (1996) procedure.
By taking a large random sampteof then! possible permutations, probability under
the null hypothesis th&@ > D, was approximated by (the numbem»t D, + 1)/(m +
1). When the error distributions are assumed homogeneous ¥¢ thitwherel is
then x nidentity matrix, and = 0.5, this test statistic is identical to the statistic of
Cade and Richards (1996) for LAD regression. The weiltitserve to eliminate the
effects of heterogenous errors so that permuting weighted residuals provide an

approximation of the sampling distribution@f

Permuting residual®Ey - X;b,) under the null reduced parameter model does
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not in general yield exact permutation probabilities except when the null paranete
just an interceptf), but this permutation approach due to Freedman and Lane (1983)
was found to have perfect correlation asymptotically with the exact test (osipleos
whenp, is known) (Anderson and Robinson 2001) and has performed well in
simulation studies for least squares (Kennedy and Cade 1996, Anderson and Legendre
1999, Legendre 2000) and least absolute deviation regression (Cade and Richards
1996). There is some correlatiom(-(1)') among the residuals and they don’t have
constant variance (Ep’] = o(l - X,(X;'X,) X)), implying that they are not exactly
exchangeable. Dependency among the residuals decreases with increasingizample
providing some asymptotic justification for treating them as exchangeable random
variables (Randles 1984). Commenges (In Press) discusses transformatioresye pres
exchangeability of the first two moments of the residuals but those were not pursued
here.

4. Simulation Experiment

| first conducted a set of Monte Carlo simulations with homogeneous errors to bstablis
performance for models with simple error structure. Normpa 0, = 1), uniform

(min = -2, max = 2), and lognormal (median =G; 0.75) error distributions were used

to provide responses with symmetric, unimodal variation with greatest densigy at t
center, symmetric variation with constant density, and asymmetric variation w

density in a long upper tail. Error distributions were centered on their 0.50, 0.75, 0.90,
0.95, or 0.99 quantiles so ttat' (t|X) = 0, providing a range of central to extreme

regression quantiles. Note that similar simulation results for quantiles lmvaetail
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(0.25, 0.10, 0.05, and 0.01) would be obtained for the symmetric error distributions.
Simple 2 parameter and 6 parameter multiple regression models were simulate
for n = 20, 30, 60, 90, 150, and 300. Independent variables were structured to have a
range of values and correlation structure similar to what might be expectedsiaresea
of forest habitat structure for avian species. Independent variables were sthgctur
thatX,was a column of 1's for the interceli;was uniformly distributed (0, 100X,
was negatively correlated £ -0.89) withX, specified by the functioX, = 4,000
-20X; + N(1 = 0,6 = 300);X; was positively correlated € 0.94) withX, specified by
the functionX; = 10 + 0.4, + N(u = 0,0 =16); X, was a 0,1 indicator variable
randomly assigning half the sample to each of 2 groupsXawds the multiplicative
interaction ofX;andX, Thus,X, ranged from O - 100 similar to measures of percent
tree canopy covek, had most values in the range 0 - 5,000 and was inversely related
to tree cover similar to density (stems/ha) of a shade intolerant shru, laad most
values in the range 0 - 60 similar to tree height (m) and was positively related to tr
cover. VariableX,andX; were negatively correlated£ -0.85) with each other
through their indirect functional relation wi¥y. The indicator variableX;) and its
interaction withX; (Xg) allowed the effect oX;for the regression quantile function to
differ in slopes, intercepts, or both terms for the 2 groups.
Each combination of conditions (quantile, error distribution, sample size, and
model structure) was sampled 1,000 times, and the test sttjst@s computed for
each sample. Probabilities for theest were evaluated with separate- 1 = 10,000

random samples of the permutation distribution. Cumulative distribution function
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(cdf) plots of the Type | error probabilities under the null hypothesis were graphed and
compared with the expected uniform cdf. However, point estimatesS&.05 and

0.10, corresponding to coverage for 95% and 90% confidence intervals, were graphed
across the combination of model conditions because the number of graphs required to
display the cdf plots was excessive. The 99% binomial confidence interval for 1,000
simulations for. = 0.10 is 0.076 - 0.124 and fer= 0.05 is 0.032 - 0.068, which can be
used as a guide to judge how much the estimated Type | error rates exceeded variation
expected from the sampling simulations. Power under the alternative hypotheses was
graphed only for = 0.05 across all combinations of conditions, although cdf plots

were initially examined.

All data for the simulation studies were generated with functions in S-Plus 2000
(Mathsoft, Inc., Seattle, WA). Regression quantile estimates and testicstatiere
computed by a static memory compilation of Fortran 95 routines implemented in the
Blossom software available from the U. S. Geological Survey
(www.mesc.usgs.gov/products/software/ blossom.shtml
4.1 Homogeneous Error Structure - Simple Regression
The simple 2 parameter regression mogelg, + f,X, + & was evaluated for
Ho: 8, = 0 withg, fixed at 6.0 ang, = 0.0, 0.01, 0.05, 0.10, and 0.20. Type | error rates
were well maintained at all sample sizes, error distributions, and quantileisteains
with exact exchangeability for this hypothesis (Fig 3.1). Type | errors for the 0.75

guantile were nearly identical to those for the 0.50 quantile and, therefore, were
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Figure 3.1. Estimated type | error ratesdor 0.05 (open) and 0.10 (solid);

for the permutatio test for homogeneous lognormal (circles), norm@éiigles),
and uniform (squares) error distributions; foy: B, = 0 and H: 3; = 0 in the model
y=By+ B X, +¢& and H: B3 =0 in the modey = B, + B, X; + BX, + BgX5 + B, X, +
BsXs + €; for 0.50, 0.90, 0.95, and 0.99 quantiles; andnfer20, 30, 60, 90, 150,
and 300. 1,000 random samples were used at eachication of H:, n, and
guantile.
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not graphed for this or subsequent simulations. This regression model also was
evaluated for B g, = 0 with, fixed at 0.10 an@,= 0.0, 0.5, 1.0, 2.0, and 3.0. Type |
error rates for the intercept under then null hypothgsis 0.0) were slightly liberal for
all quantiles, becoming extremely liberal fox 150 for 0.99 quantile (Fig. 3.1). A
comparison of the cdf’s for these two hypotheses for the lognormal error distribution
andn = 90 provides another view of the degree to whighgk= O deviates from the
exactness of Hp, = 0 (Fig 3.2).

Power to detect nonzero slopgs£ 0.01, 0.05, 0.10, 0.20) was progressively
lower moving from the 0.50 to 0.99 quantile and this reduction was greatest for the
lognormal error distribution (Fig. 3.3), less for the normal and least for the uniform
error distributions (Appendices 3.1 and 3.2). For this and subsequent power
simulations, the lognormal error distributions had lowest power and are given in the
Figures; power for normal and uniform error distribution are in Appendix 3. Power for
theD test was greater (relative power = 1.00 - 1.41) for 0.50 and 0.75 quantiles to much
greater (relative power =1.00 - 4.91) for 0.90 - 0.99 quantiles than for the rankscore
tests (Chapter 2). Power to detect nonzero intercgptsd.5, 1.0, 2.0, and 3.0)
followed a similar reduction with increasing quantile for the lognormal error
distribution, with no effective power for the 0.99 quantile ard150 (Fig. 3.3). The
normal and uniform error distributions had less reduction in power across quantiles for
this hypothesis and had effective power for all samples sizes for the 0.99 quantile
(Appendices 3.1 and 3.2). The rankscore tests (Chapter 2) had power comparable to the

D test for this hypothesis.
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Figure 3.2. Cumulative distributions of 1,000 mestied errors for permutatid@h
tests of H: B, = 0 and H: 3, = 0 for the modey = 3, + B,X; + € and H: 3, = 0 for
the weighted modety = w3, + Wi, X; + w(1 +yX,)e with y=0.05 andv = (1 +yX,)?%;
for 0.50, 0.90, 0.95, and 0.99 quantiles for the¢owgal error distribution anal= 90.
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Figure 3.3. Estimated power far= 0.05 for the permutatioD tests for
homogeneous lognormal error distributions fgr B, = 0 and H: 3, =0 in
the modely = 3, + 3, X; + € ; for 3, = 0.0, 0.5, 1.0, 2.0, and 3.0 and for
B,= 0.0, 0.01, 0.05, 0.10, and 0.20; for 0.50, 0®05, and 0.99 quantiles;
and forn = 20 (circle), 30 (triangle), 60 (square), 90 (dard),

150 (pentagon), and 300 (star). 1,000 random sssnpére used at each
combination of effect sizen, and quantile.
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4.2 Homogeneous Error Structure - Multiple Regressi

The 6 parameter modai= 5, + S, X, + X, + f X3+ B X ,+ B X +e, was
evaluated for B g5 = 0 withg,=36.0,4,=0.10,4,=-0.0058 ,= 2.0, angB ;= 5=
0.0. Type | error rates were always slightly lddebecoming more liberal with
increasing quantile and decreasing sample sizetpdint that error rates were totally
unreliable for the 0.99 quantile (Fig. 3.1). Typror rates for the uniform error
distribution did not degrade as much as thoseh®tdgnormal and normal error
distributions. The 6 parameter model also wasuawed for H 5, = 0 with,= 36.0,
S, =0.10,4,=-0.0054,=0.05, angt,= = 0.0. A similar pattern of liberal Type |
error rates was found. Power was not investigtatethultiple regression models with
homogeneous errors.
4.3 Heterogeneous Error Structure - Simple Regoessi
The 2 parameter weighted regression model withrbgémeous errorsyy = wg, +
wp, X, + W(1 +yX))e, was evaluated with= 0.05 using the known weights= (1 +
0.05X,)™* for H,: 8, = 0 with,= 6.0 angs,= 0.0. Type | error rates were slightly
liberal for 0.50 - 0.90 quantiles, becoming incnegly liberal from 0.95 to 0.99
guantiles with decreasing sample size (Fig. 34)pe | error rates were not as liberal
for uniform compared to lognormal and normal edistributions at higher quantiles
and smaller sample sizes. Examining the cdf'$Hisr hypothesis for the lognormal
error distribution anah = 90 provides another view of the degree to whighs, = O for
the weighted estimate in the heterogeneous erstitmition model deviates from the

exactness of HA, = 0 in the homogeneous error distribution modej &2). The

101



Type | Error Rate

00" ’ . : : —
30 60 90 150 300 30 6090 150 300
Sample Size

Figure 3.4. Estimated type | error ratesdor 0.05 (open) and 0.10 (solid);
for the permutatiom test for heterogeneous lognormal (circles), normal
(triangles), and uniform (squares) error distribns; for H: 3, = 0 and

Ho: B, = 0 in the weighted modely = w3, + W, X; + w(1 +yX;)e with

y=0.05 andv = (1 +yX,)%; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for
n= 20, 30, 60, 90, 150, and 300. 1,000 random &=smnwpere used at each
combination of :, n, and quantile.
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discrepancy is similar to that observed when tgdtie intercept term. The null model
implied by the weighted model is forced through ahigin (because the column vector
of 1's for the intercept have been multipliedyand the residuals no longer have their
expected properties when the objective functionghyinimized.

The H,:4,= 0 also was evaluated in the 2 parameter weigiegession model
with heterogeneous erromy = wpg, + wg X, + w(1 +yX,)e, withy = 0.05 using the
known weightsv = (1 + 0.0X%,)*, 8, = 0.10, ang8,= 0.0, 0.5, 1.0, 2.0, and 3.0. Type |
error rates were slightly liberal (Fig. 3.4), batmore so than when testing this
hypothesis for homogeneous error distributions. (Bid).

Power to detegf, = 0.01, 0.05, 0.10, and 0.20 for the weightedeggjon
model with heterogeneous errors declined with &sireg quantile and decreasing
sample size more for the lognormal (Fig. 3.5) tthennormal and uniform error
distributions (Appendices 3.3 and 3.4). Powettlierlognormal error distribution and
the 0.99 quantile was unreliable fox 150 because of excessively liberal Type | error
rates for smaller sample sizes. Power to d@geet0.5, 1.0, 2.0, and 3.0 followed a
similar decline with increasing quantile and desneg samples size as for
homogeneous error distributions, becoming almoseristent for the 0.99 quantile of
the lognormal error distribution (Fig. 3.5). Umifio and normal error distributions had
effective power for the 0.99 quantile (Appendiceésand 3.4). Power estimates were
assumed to be slightly inflated because Type reates were slightly liberal for the

weighted regression models.
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Figure 3.5. Estimated power far= 0.05 for the permutatioD test for
heterogeneous lognormal error distributions fgrfi = 0 and H: ;=0 in
the weighted modekby = w3, + wB,X; + w(1 +yX;)e with y= 0.05 and
w= (1 +yX))?; forB,=0.0, 0.5, 1.0, 2.0, and 3.0 and fyr= 0.0, 0.01,
0.05, 0.10, and 0.20; for 0.50, 0.90, 0.95, an® @®antiles; and for

n = 20 (circle), 30 (triangle), 60 (square), 90 (dard), 150 (pentagon),
and 300 (star). 1,000 random samples were usedcdt combination of
effect sizen, and quantile.
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4.4 Heterogenous Error Structure - Multiple Regress

The 6 parameter modely = w(B, + S, X, + S X, + S X+ B X .+ X <+ (1 +X )e), with

y = 0.05 and known weights = (1 + 0.0%X,)* was evaluated for the full model
hypothesis Bl g, = f,=8,=8,=Bs=0forp fixed at 36.0 an@ .= ,=f = ~f =

0 for Type | error rates, and wit = 0.10, 0.15, 0.20, 0.25 for power. Type | error
rates were slightly liberal for 0.50 - 0.95 quasgijlbecoming more liberal with
decreasing sample size for the 0.99 quantile, edpefor lognormal error distributions
(Fig. 3.6). Power estimated with 1 of the 5 slppeameters;) allowed to be nonzero
was low to nonexistent for the 0.99 quantile (Big). Power for this and other
hypotheses for the multiple regression models wakiated only for the lognormal
error distribution to reduce the amount of compytnd reporting. Power for normal
and uniform error distributions would be greatertlor equal to that for the lognormal
error distribution for the quantiles considered.

Type | error rates for subhypotheses involving twdus variables in the 6
parameter weighted model were evaluated fppk=0 and H ;== 0 with
S,=36.0,4,=0.10,4,=-0.0054,= 2.0, angg ;== 0.0. As elsewhere, Type | error
rates were slightly liberal, becoming more libevéth increasing quantile and
decreasing sample size, more so fgr/iH = fs= 0 (Fig. 3.7) than for H/, = 0 (Fig.
3.6). Power for Kl g, = 0 was estimated with, = 0.10, 0.15, 0.20, and 0.25 for the
lognormal error distribution. Power was low foe .90 to nonexistent for the 0.95

and 0.99 quantiles (Fig. 3.8).

105



zoB =B,=B3=PB,= Bs—o Ho:B5;=0 Ho:B,=0

0.50

0.00—— | . | . L. |

0.301 r .

0.90

0.007“ o . ! . L. . . J

0.401 r r

Type | Error Rate

0.30f

0.20]

0.95

0.10]

0.00

0.50
0.40
0.30f

0.20

0.99

0.10%a

0.007““ P I A | S [ e S S | )
30 60 90 150 300 30 60 90 150 300 30 60 90 150 300

Sample Size

Figure 3.6. Estimated type | error ratesdor 0.05 (open) and 0.10 (solid) for the
permutatiorD test for H: B, =B,=B3=B,=Bs=0, H,: B;=0,and §: B,=0;

for heterogeneous lognormal (circles), normal (ii@s) and uniform (squares) error
distributions withy = 0.05 in the weighted modely = w(B, + 3,X; + B, X, + BX5+

BX,+ BsXs + (1 +yX))e) with w = (1 +yX;)%; for 0.50, 0.90, 0.95, and 0.99 quantiles;
and forn = 20, 30, 60, 90, 150, and 300. 1,000 random &zsnwere used at each
combination of K, n, and quantile.
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Figure 3.7. Estimated type | error ratesdor 0.05 (open) and 0.10 (solid) for the
permutatiorD test for H: ;=35 = 0 and H: B, = 5 = 0; for heterogeneous
lognormal (circles), normal (triangles) and unifo¢sguares) error distributions
with y = 0.05 in the weighted modely = w(B, + 3,X; + B, X5+ BaXs+ ByX, + BsXs

+ (1 +yX;)e) with w = (1 +yX,)?; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for
n= 20, 30, 60, 90, 150, and 300. 1,000 random $=snpere used at each

combination of K, n, and quantile.
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Figure 3.8. Estimated power far= 0.05 for the permutation tests for

Ho: B1=B,=B3=B,=Bs=0, H: B;3=0, and H: B, = O; for heterogeneous lognormal
error distributions witty = 0.05 in the weighted modely = w(B, + B, X; + BX, + BsXs

+ B X+ BsXs + (1 +yX))g); for 0.50, 0.90, 0.95, and 0.99 quantiles; and for

n= 20 (circle), 30 (triangle), 60 (square), 90 (doand), 150 (pentagon), and 300 (star).
1,000 random samples were used at each combiradtidg n, and quantile.
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Subhypotheses involving categorical predictorh&@ parameter weighted
model were evaluated for,HB; = 0 and H £,=-= 0 withg ,= 36.0,4 ,= 0.10,
S, =-0.0054,=0.05, angt,=f5= 0.0. Type | error rates for,Hp; = 0 (Fig. 3.6) and
Ho: 8, =85= 0 (Fig. 3.7) had similar patterns as the Typedr rates for subhypotheses
for continuous predictors evaluated above. Poves @valuated for the subhypothesis
Hq: 8,=0forg,= 1.5, 3.0, 6.0, and 12.0 and the lognormal etigribution. Power
declined with increasing quantiles and decreasangpde size but was grossly inflated
at smaller sample sizes for 0.95 and 0.99 quar{figs 3.8) because of excessively
liberal Type | error rates.
5. Example Application
| constructed confidence intervals for quantileresgion estimates of Lahontan
cutthroat trouDncorhynchus clarki henshadensity (trout m ) as a function of stream
channel morphology (width:depth ratio) for 13 snsattams in Nevada sampled over 7
years (Dunham et al. 2002). Width:depth ratio memsure that integrates stream
channel characteristics thought to be related @llsstream integrity and, thus, fish
populations and is easily measured for assesshdabitat conditions and land use
impacts over large regions. Lahontan cutthroatttaoe a threatened species of special
interest to federal land management agencies.

Here | considered the nonlinear model expf, + 5,X; + €), wherey is trout
m™* andX, is width:depth ratio, fon = 71 observations of streams for 1993 to 1999
(Dunham et al. 2002). The model was estimatedamteighted linear form lwy =

wWp, + Wp, X, + we and estimates for selected regression quantiles pletted by
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exponentiating to back transform to the nonlineamf(Fig. 3.9). The vector of

weightsw were identical to those used with the quantil&saare tests (Chapter 2).
Weights were estimated by computing the averagavjza differences between the 76
unweighted regression quantile estimdggs) to estimate, andb,(t) to estimate, in

the standard deviation functigp- y,X, and then taking the reciprocal,= (1.310 -

0.017X))*. Estimates of parameters for all quantiles were plotted as a step function
with 90% confidence intervals for 19 quantiles between 0.05 and 0.95 by increments of
0.05 (Fig. 3.9).

Interval endpoints were estimated by invertingBhiest as an alternative to
inverting the quantile rankscore tests used by Dunham et al. (2002) and in Chapter 2.
Starting values for the manual iteration of the test inversion were based on thed inter
endpoints estimated by the rankscore tests (Chapter 2). These values were then used as
hypothesized parameter value<@) in the transformatiow - X,&(t) to test the Kl :

B,(7) =¢&(r) with (3), wherep, was eithep, or 5, depending on the parameter being
tested. | usedch+ 1 = 100,000 permutations to compute probabilities fobthests
associated with confidence interval endpoints.

The 90% confidence intervals estimated by invertingxthest (Fig. 3.9) were
smoother than those for the rankscore tests (Chapter 2) because the permutation
distribution for theD test was much more continuous than the distributions of the
rankscore tests. Linear interpolation between hypothesize parameter valued was
required to achieve = a = 0.10 with theD test as it was for the rankscore tests

(Koenker 1994, Chapter 2). Thetest based 90% confidence intervals were slightly
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Figure 3.9. (A) Lahontan cutthroat trout'rand width:depth ratios for 13 small
streams sampled 1993-1996<71); exponentiated estimates for 0.90, 0.50,
and 0.10 regression quantiles for the weighted m@dedw = (B3, + B, X; +

(Yo - Y2X)E)w, w = (1.310 - 0.01X,) L. Step functions (solid lines) for estimates of
B, (B) andp, (C) by quantiles [0, 1] are bracketed by pointwises9tbnfidence
intervals (dashed lines) based on invertingDh@ermutation test.
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narrower for lower quantiles than those based werting rankscore tests (Chapter 2),
but nearly identical in width for the upper quaetil Differences between tBetest and
the quantile rankscore based intervals (Chapte?g not sufficient to alter any
conclusions about the effects of width:depth ratiogutthroat trout populations.
Confidence bands estimated by ¢est supported an interpretation that increasing
stream width:depth ratios from 15 to 45 decrealedighest 20% of trout densities

(r = 0.80) by 9 to 65% [exp(-0.003 x 30) = 0.914 anp(eéx035 x 30) = 0.350],
similar to conclusion based on the quantile raniestest intervals (Dunham et al.
2002, Chapter 2).

6. Discussion

Although the drop in dispersion permutatidriest had better power than the quantile
rankscore tests for hypotheses where both maimtaessonable Type | errors, it had
extremely liberal Type | error rates at smaller gke®s and less extreme quantiles than
the quantile rankscore tests (Chapter 2). Typeor eate failure occurred more rapidly
with decreasing sample size and increasing qudntilne lognormal error distribution
than for normal or uniform error distributions besa it has a long-tail with low density
of observations. My example application with trehbntan cutthroat trout data
suggested that the differences between the drdpersion permutation test and
guantile rankscore tests may not always be suffice substantively affect the
interpretation of an analysis when quantiles usedat too extreme (e.g., 0.8 <
0.95). When estimating models for more extrementiies (e.g.x = 0.99), fairly large

samplesrg > 300) will be required for models with more thast a few parameters to
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ensure reliable confidence intervals based onredilhss of test.

The slightly liberal nature of the permutatiDrtest when testing the intercept
term in unweighted models and any parameter inhtethgmodels was consistent with
simulation results for permutation versions of ttvekscore tests (Chapter 2). There is
additional sampling variation not accounted fothwy permutation distribution of the
test statistics when the null model was constrathesligh the origin. If the number of
positive, negative, and zero residuals are derimtéd’, N-, N°, respectively, and il °
= p - g under the null model, then there are at mestegative residualdN( < nt < N-

+ N9 and at most(1 - t) positive residualsN*< n[1 - 1] < N* + N°) when the null
model includes an intercept (Koenker and Bassé8 1Roenker and Portnoy 1996).
When the null model does not include an intercdyat Jimits on the number of positive
(negative) residuals exceeded these values by d@moonsistent with binomial random
variation with success probability I {ort for negative residuals). This is similar to
least squares regression models forced througbridi@ which do not have the mean
of the residuals equal to zero. Legendre and Deeseie(In Press) proposed a solution
for permutation tests for least squares regresdsyarsing a double permutation scheme
where the first step varies the number of posiinegative) residuals as a binomial
random variable with success probability 0.5. dredgecond step permutes these
residuals across the rowsXf This procedure was easily modified for the peation
version of the quantile rankscore test (Chapténu2needs to be investigated for

application to thé® test.
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My simulation experiment avoided the issue of howdtimate weights for
heteroscedastic models by using the known stardéasidtion function. In
applications, this function is not known and theghies must be estimated. | used a
simple pairwise difference approach based on tiialinnweighted estimates for
estimating weights in my example application. @#ggroaches for estimating
weights include regressing absolute values of uvadsdfrom an unweighted fit of the
0.5 quantile on the independent variables for limeeation-scale models (Zhou and
Portnoy 1998) and the sparsity estimation appréacimore general heteroscedastic
models (Koenker and Machado 1999).

Acknowledgments
J. D. Richards provided programming support fordineulations. M. J. Anderson, P.
Good, R. Koenker, and J. E. Roelle reviewed eatligfts of the manuscript. J. B.
Dunham provided the Lahontan cutthroat trout data.
Literature Cited
Allen, A. W., B. S. Cade, and M. W. Vandever. 20E&Iifects of emergency haying on
vegetative characteristics within selected consgenvaeserve program fields in

the northern Great Plains. J. Soil and Water Guasen56: 120-125.
Anderson, M. J., and P. Legendre. 1999. An ewcglidtomparison of permutation

methods for tests of partial regression coeffigenta linear model. Journal

Statistical Computation and Simulati62:271-303.

Anderson, M. J., and J. Robinson. 2001. Pernwutaésts for linear models.

Australian New Zealand Journal of Statisd@s/5-88.

114



Barrodale, I., and F. D. K. Roberts. 1974. Algon 478: Solution of an
overdetermined system of equations inltheorm. Communications of the
Association for Computing Machinety:319-320.

Buchinsky, M. 1991. The theory and practice addmjue regression. Ph.D
dissertation, Harvard University, Cambridge MasSAU 211pp.

Cade, B. S., and Q. Guo. 2000. Estimating effeict®nstraints on plant performance
with regression quantiles. Oik8%: 245-254.

Cade, B. S., and J. D. Richards. 1996. Permut#tsts for least absolute deviation
regression. Biometrids2:886-902.

Cade, B. S., J. W. Terrell, and R. L. Schroed&991 Estimating effects of limiting
factors with regression quantiles. Ecol@gy311-323.

Chernozhukov, V., and L. Umantsev. 2001. Condéiwvalue-at-risk: Aspects of
modeling and estimation. Empirical Econon26s 271-292.

Commenges, D. In Press. Transformations whicbgove exchangeability and
application to permutation tests. Journal of Noapweetric Statistics.

Dunham, J. B., B. S. Cade, and J. W. Terrell. 2088uences of spatial and temporal
variation on fish-habitat relationships definedrbgression quantiles.
Transactions of the American Fisheries Soci&ty 86-98.

Eastwood, P. D., G. J. Meaden, and A. Grioche.120dodeling spatial variations in
spawning habitat suitability for the s@®lea soleaising regression quantiles

and GIS procedures. Marine Ecology Progress S22es251-266.

115



Freedman, D., and D. Lane. 1983. A nonstochagBcpretation of reported
significance levels. Journal of Business and Enoodtatisticsl:292-298.

Gutenbrunner, C., and J. Jthkeva. 1992. Regression rank scores and regression
guantiles. Annals of Statisiti@9: 305-330.

Gutenbrunner, C., J. Jukova, R. Koenker, and S. Portnoy. 1993. Testmeéar
hypotheses based on regression rank scores. Nongiic Statistic®:307-
331.

Haire, S. L., C. E. Bock, B. S. Cade, and B. C.riggh 2000. The role of landscape
and habitat characteristics in limiting abundariograssland nesting songbirds
in an urban open space. Landscape and Urban Ripd8{iL-2):65-82.

Huston, M. A. 2002. Introductory essay: Criticsgues for improving predictions.
Pages 7-2in J. M. Scott, P. J. Heglund, and M. L. Morrisonij@d.
Predicting species occurrences: issues of accaratgcale. Island Press,
Covelo, California, USA.

Kennedy, P. E., and B. S. Cade. 1996. Randoroizédssts for multiple regression.
Communications in Statistics - Simulation and Cotapon 25: 923-936.

Koenker, R. 1987. A comparison of asymptoticitgsmethods fol,-regression.
Pages 287-291 Y. Dodge, editor. Statistical data analysis basethel ;-
norm and related methods. Elsevier Science PubiigheV. (North-Holland),
Amsterdam.

Koenker, R. 1994. Confidence intervals for regi@s quantiles.Pages349-359n P.

Mandl and M. HuSkova, editors. Asymptotic statistid®roceedings of the 5th

116



Prague Symposium. Physica-Verlag

Koenker, R. 1997. Rank tests for linear modélages 175-19@ G. S. Maddala and
C. R. Rao, editors. Handbook of Statistics, vol 15

Koenker, R., and G. Bassett. 1978. Regressiontiggm Econometricd6:33-50.

Koenker, R., and G. Bassett. 1982. Robust testsdteroscedasticity based on
regression quantiles. Econometrifa 43-61.

Koenker, R. and V. d’Orey. 1987. Computing regassguantiles. Applied Statistics
36:383-393.

Koenker, R. and V. d'Orey. 1994. A remark on alifpon AS229: computing dual
regression quantiles and regression rank scorppliedl Statisticgl3:410-414.

Koenker, R., and J. A. F. Machado. 1999. Gocaglnéfit and related inference
processes for quantile regression. Journal oAtherican Statistical
Associatiornd4:1296-1310.

Koenker, R., and S. Portnoy. 1996. Quantile egiom. University of Illinois at
Urbana-Champaign, College of Commerce and Busifdssnistration, Office
of Research Working Paper 97-0100. 77pp.

Koenker, R., and Q. Zhao. 199-estimation for linear heteroscedastic models.
Nonparametric Statistic%223-235.

Legendre, P. 2000. Comparison of permutation auslifior the partial correlation and
partial Mantel tests. Journal of Statistical Cotagion and Simulatio67:37-

73.

117



Legendre, P., and Y. Desdevises. (In press).pkdent contrasts and regression
through the origin. Systematic Biology.

Randles, R. H. 1984. On tests applied to ressdduddurnal of the American Statistical
Association79:349-354.

Scharf, F. S., F. Juanes, and M. Sutherland. 1888rring ecological relationships
from the edges of scatter diagrams: comparisorgression techniques.
Ecology79:448-460.

Terrell, J. W., B. S. Cade, J. Carpenter, and Jilmpson. 1996. Modeling stream
fish habitat limitations from wedged-shaped paterhvariation in standing
stock. Transactions of the American Fisheries&p&P5:104-117.

Zhou, K. G., and S. L. Portnoy. 1998. Statistinf#rence on heteroscedastic models

based on regression quantiles. Nonparametricsgta®:239-260.

118



Appendix 3

Simulation Results for Normal and
Uniform Error Distributions
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Appendix 3.1. Estimated power far= 0.05 for the permutatioDd tests for
homogeneous normal error distributions fgr B, = 0 and H: ;= 0in

the modely = 3, + B, X; + €; for 3,= 0.0, 0.5, 1.0, 2.0, and 3.0 and for
B,=0.0, 0.01, 0.05, 0.10, and 0.20; for 0.50, 0095, and 0.99 quantiles;
and forn = 20 (circle), 30 (triangle), 60 (square), 90 (doardl),

150 (pentagon), and 300 (star). 1,000 random ssawpére used at each
combination of effect siz&, and quantile.
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Appendix 3.2. Estimated power far= 0.05 for the permutatioDd tests for
homogeneous uniform error distributions fo: B, = 0 and H: ;= 0in

the modely = 3, + B, X; + €; for 3,= 0.0, 0.5, 1.0, 2.0, and 3.0 and for
B,=0.0, 0.01, 0.05, 0.10, and 0.20; for 0.50, 0095, and 0.99 quantiles;
and forn = 20 (circle), 30 (triangle), 60 (square), 90 (doardl),

150 (pentagon), and 300 (star). 1,000 random ssawpére used at each
combination of effect siz&, and quantile.
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Appendix 3.3. Estimated power far= 0.05 for the permutatioD test for
heterogeneous normal error distributions fgrfy =0 and H: B; =0 in
the weighted modety = w3, + wB,X; + w(1 +yX;)e with y= 0.05 and

w = (1 +yX,)?; for3,=0.0, 0.5, 1.0, 2.0, and 3.0 and = 0.0, 0.01,
0.05, 0.10, and 0.20; for 0.50, 0.90, 0.95, an® Q®antiles; and for

n = 20 (circle), 30 (triangle), 60 (square), 90 (dad), 150 (pentagon),
and 300 (star). 1,000 random samples were useacatcombination of
effect sizen, and quantile.
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Appendix 3.4. Estimated power far= 0.05 for the permutatioD test for
heterogeneous lognormal error distributions fgr{ig = 0 and H: 3, = 0 in
the weighted modeby = w3, + w3, X; + w(1 +yX;)e with y=0.05 and
w= (1 +yX,)?; for3,=0.0, 0.5, 1.0, 2.0, and 3.0 and &= 0.0, 0.01,
0.05, 0.10, and 0.20; for 0.50, 0.90, 0.95, an® Q®antiles; and for

n = 20 (circle), 30 (triangle), 60 (square), 90 (dard), 150 (pentagon),
and 300 (star). 1,000 random samples were useachtcombination of
effect sizen, and quantile.
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Chapter 4

Estimating Effects of Limiting Habitat Resour ces:
Hidden Biasand Spatial Structure

Abstract: Simulations from a large\N(= 10,000) finite population representing grid
areas on a landscape were made to demonstrates/ésions of hidden bias that might
occur when the effect of a measured habitat variablsome animal was confounded
with the effect of another unmeasured variablet(glbaand not spatially structured).
Regression quantile {0c < 1) parameters for linear models that excluded the
important, unmeasured variable were used to evahias relative to parameters from
the generating model. Depending on whether intierss of the measured habitat and
unmeasured variable were negative (interferenegadotions) or positive (facilitation
interactions), either uppet £0.5) or lower £ < 0.5) quantile regression parameters
were less biased than mean rate parameters. 3gnip# 20 - 300) simulations
demonstrated that regression quantile estimates@rfalence intervals constructed by
inverting rankscore tests provided valid coveragidese biased parameters. Local
forms of quantile weighting were required for ohtag correct Type | error rates and
confidence interval coverage. Heterogeneous, meatiresponse patterns occurred in
simulations with correlations between the measaretlunmeasured variables. When
the unmeasured variable was spatially structuradaton in parameters across
guantiles associated with effects of the habitatiée were reduced by modeling the

spatial trend surface as a cubic polynomial oftiocacoordinates, but substantial



hidden bias in the parameters remained. Quaegjession was used to estimate
effects of physical habitat resources on a bivalussel Macomona liliand in the
spatially structured landscape of a New Zealantdrar

1. Introduction

The relationship between an organism and its habitaf theoretical interest in ecology
because it is fundamentally tied to questions abdmsitibution and abundance (Wiens
1989, Huston 2002). Habitat relationships alsaraportant in natural resource
management because environmental regulations idrtied States (e.g., National
Environmental Policy Act, Fish and Wildlife Coordiion Act, National Forest
Management Act) mandate that management agencis&leo impacts to fish and
wildlife habitat in their land use planning (Mowis et al. 1998). Mathematical and
statistical models commonly are used for quantifyime relationship between an
organism and the resources provided by its habiHabitat models are used for
predicting changes in distribution and abundaneetdichanges in resources driven by
alternative land management or environmental cha(geuffer 2002). Reliability of
guantitative predictions from animal habitat modeds been questioned, however,
because factors other than the resources provigadltat may limit animal
populations (Rotenberry 1986, Fausch et al. 1988¢€l et al. 1996, Terrell and
Carpenter 1997). Typically, not all factors thatit populations are measured and
included in the models, either due to logisticaistaaints or because they are unknown.
As a consequence, predicted responses to changabitat often lack the generality to

be considered reliable statements of outcomegylitkebccur at other times or places
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than those originally sampled. This hinders bbhthdevelopment of general theory
related to resource selection and the utility ofleis for predicting outcomes of
alternative management or conservation actions.

We can envision the distribution and abundancengfspecies as being
constrained by biophysical factors (e.g., climatel, productivity), habitat resources
(e.g., vegetation providing food and cover), andrspecific (e.g., competition and
predation) and intraspecific (e.g., density depahtehavioral responses) biotic
interactions (Morrison 2001, Huston 2002, O’Cong002). When none of the factors
are limiting over some interval of time and spdhen the species will be locally
abundant. When any single factor is limiting, sipecies will be constrained to a
locally lower abundance than expected if all faxtme permissive. Processes
associated with the constraints operate at diftesgas, slower for most biophysical
factors and faster for biotic interactions. Iftfars that are the active constraint limiting
species abundance at some sample locations aresuared, then the species response
may exhibit heterogeneous variation across levalseomeasured habitat resources
simply because they are not limiting at all timesocations sampled (Kaiser et al.
1994, Cade et al. 1999). Heterogeneity arisesalirgeractions among the multiple
biotic and abiotic factors that affect growth, sual, and reproduction of an organism,
where the factor that is limiting differs among sdenocations and times (Van Horne
and Wiens 1991, Huston 2002). When we measureaosiipset of the potential
limiting factors such as habitat resources, iessonable to expect a rather large

component of unexplained variation to remain inmodels, especially as we increase
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the spatial and temporal extent of our samplinge Yariance amplification hypothesis
of Huston (2002) suggests that variation in abuoéddar other measures such as
biomass, survival, or fecundity) increases as hahitality increases because large
variation in population size can only occur wheneels of habitat resources permit high
abundance when other factors are not limiting.

Huston (2002) and O’Connor (2002) suggested tleating relationships
between organisms and resources provided by thbitat as constraints rather than as
correlates is a paradigm shift affecting how we el@shimal habitat relationships. The
essence of this idea is that much of the usefalmétion about how organisms
respond to changes in levels of resources mayenfuund in statistical estimates of
rates of change in mean responses but in estiroftates of change near maximum
responses. Changes in responses near the ex@esrtésught to better represent rates
of change when habitat is the constraint rather dther unmeasured processes. Rates
of change in a response variabjeds a function of some predictor variablgs differ
from the center to the extremes of the distribigionheteroscedastic regression models
by definition (Terrell et al. 1996, Cade et al. 999 Statistical difficulties associated
with estimating effects at the extremes of heteneges response distributions and
some solutions have been discussed by Kaiser @t984), Terrell et al. (1996),
Thomson et al. (1996), Cade et al. (1999), and BI.€2000).

Quantile regression has been used to estimatdstieecological limiting
factors (Scharf et al. 1998, Cade et al. 1999, GadeGuo 2000, Huston 2002) because

it provides statistical estimates of rates of cleaingselected or all parts of a response
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variable distribution. Because quantile regress&timates rates of change across all
parts of a response distribution, it is especiallgrmative for modeling heterogeneous
distributions like those in animal habitat relasbips (Terrell et al. 1996, Cade et al.
1999, Dunham et al. 2002, Huston 2002). It is jpdes$o focus estimation on a
selected part of the response distribution neamtisedmum (e.g, 90 to 99
percentiles) if it is reasonable to assume thatitibeeasured processes are only likely
to reduce rates of change in the responses (Ketisgr 1994, Terrell et al. 1996, Cade
et al. 1999, Cade and Guo 2000). This is impicthe variance amplification
hypothesis of Huston (2002). Quantile regressemlieen used to estimate
relationships between stream fish populations hanl habitat (Terrell et al. 1996,
Dunham et al. 2002); ocean fish and spawning hafiitstwood et al. 2001); and
breeding grassland birds, habitat, and landscapecsiéHaire et al. 2000).

My objectives were to further explore assumptidnsud confounded relations
between measured habitat variables and unmeasariadles for other important
processes and to evaluate the statistical perfarenahregression quantile estimates
and rankscore tests under these conditions of hiles. | examined assumptions
about the interactions among habitat resourceo#mst limiting factors that would
support focusing on estimated rates of changel@ctsel portions of the species
response distribution (e.g., the upper quantil&)mpling distributions for estimates of
various quantiles of a species response distribatna associated rankscore test
statistics were simulated for a range of interaictind correlation structures between

limiting habitat resources, which were considereghsured, and some additional
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limiting factors, which were considered unmeasur€de estimating models contained
various degrees of hidden bias (sensu Rosenbauin 1995, 1999) because rates of
change estimated for the measured variables wafewaded with effects of the
unmeasured variables. Thus, unlike the analys€hapters 2 and 3, heterogeneous
variance structure of the simulated data was noipbetely specified by a function of
the measured predictors included in the estimatindels. Simulated data were
generated to mimic spatially structured processes landscape. The potential to
account for unmeasured limiting factors by mode8ipgtial trend (Borcard et al. 1992)
with quantile regression also was investigated,aandse study was conducted on
previously published data (Legendre et al. 1997).

2. Quantile Regression Models With Unmeasured Variables

To explore patterns of heterogeneity due to misgifggmation on some important
limiting factor other than habitat resources, leexted the linear model assumptions
beyond those considered by Cade et al. (1999) aistbH (2002). Data were generated
from a 2 variable linear model with interactigrs 6,X, + 6,.X, + 0 X+ 0 X X+ ¢,

wherey was the dependent response variaXjeyas 1 for the intercepk, (uniform [O,
50]) was the measured habitat variablg(uniform [0, 4,000]) was a variable for some
other limiting process that was not measured and available for the estimatiig mode
ande was a random error term that was independent and identically distributed (iid).
Error distributions were lognormal (median =05 0.75) to create asymmetric
distributions or uniform [-0.50, 0.50] to create symmetric distributions. By varying the

correlation betweek; andX,and direction and size of interaction effects dué,tdt
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was possible to simulate a range of linear, nonlinear, homogeneous, and heterogeneous
distribution patterns associated with an estimating mgdeg X, + X, + &', wheres’

includes the generating error term plus the effect of unmeasured covariates4.e.,

+ 60,X,+ 0 X, X,(Table 4.1). Note thg, andg, will not in general be equivalent &

and@,, although they may differ less for some quantiles.

Table 4.1. Parameter values in hidden bias simulations and direction of gi@$ in
relative tof, where generating models ware 6,X, + 0,X;+ 8 X+ 0 X X ,+ ¢, and

estimating models were= X, + f X, +¢’.

Generating X, spatially Less biased
Model 0, 6, 0, 0, r(X, X) structured p,(7)

Additive 1.0 041 0.005 0.0000 0.00 No =t similar
Interference 1.0 041 0.0 -0.0001 0.00 No increasing
Facilitaton 1.0 0.01 0.0 0.0001 0.00 No decreasing
Interference 1.0 041 0.0 -0.0001 0.56 No increasing
Interference 1.0 041 0.0 -0.0001 0.92 No increasing
Interference 1.0 041 0.0 -0.0001 0.00 Yes increasing

Thet"regression quantile (91 < 1) of the generating model was defined as
Q(t]Xo, Xp, X X1 X) = 0{1)Xo+6 X 1+ 6 X ,+60 X X ,whered 3) =0 & F,*(r) and
F.* was the inverse of the cumulative distribution of the errors. This is just a
conventional homoscedastic linear regression model where all parameterbanheet
intercept §,) are the same for all quantiles.e. parallel hyperplanes (Cade et al.
1999). Tha™regression quantile of the estimating model where the effect of the

unmeasured covaria¥ was not estimable wa&g(t| X,, X;,) =B{1)X,+8{1)X, Inthe
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estimating model both the intercgfyfr) and slopég,(t) for the measured covariate may
vary with the quantile because the modified error teefr= ¢ + 6,X,+ 6,X,X,included
the additive random component and a multiplicative component that was a function of
the measured covaria¥g, potentially creating mixture distributions that were not
identically distributed. Because the parameters of these mixture disinbuiere not
necessarily identifiable, | took a random sampldlef 10,000 and treated this as a
large, finite population. | compared regression quantileg,toy andg,(t) from the
estimating model witlé,(t) andd,(t) from the generating model for the finite
populations to examine differences in effects associated with the habitatesétix
due to different interaction effects and correlations with the unmeasured v@dable
Sampling distributions of estimates and associated rankscore teststatisti
(Chapter 2) for the estimating model with heterogeneous mixture distributioas wer
evaluated by taking 1,000 samplesrof 20, 30, 60, 90, 150, and 300 without
replacement from the finite populationshf 10,000. Rankscore tests evaluated were
the asymptotic Chi-square distribut€dthe permutatioifr, and the double permutation
F for null models constrained through the origin (Chapter 2). The large, finite
population can be thought of as 10,000 100-ha blocks occurring on a landscape of 100
x 100 km extent.
Spatial structuring was accomplished by relating the unmeasured limiting fac
X, to latitude LAT) and longitudel(ONG) coordinates for the center of 10,000 square
blocks on a 100 x 100 grid. | used a cubic polynomial spatial trend surface model

(Borcard et al. 1992, Legendre et al. 1997) on mean cent&edndLONG
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coordinates (-50 to 50, p = 0) wi¥y= 2,000 + 4.60NG+ 7.9.AT + 0.1LONG? -

0.2LAT? + 0.005.ONG? + ¢, with ¢ uniformly distributed (-900, 900) to yield & =

0.426 with the least squares regression estimate of the spatial trend sugidce)(F

The spatially structureH, had values ranging from 0 to 4,000 and was uncorrelated
with X;. Obviously, similar spatial structuring could have been induced in either the
response variablkeor in the measured habitat variallle

3. Patterns of Effects Due to Confounding with Unmeasured Processes

To explore patterns associated with missing information on some important onerat
process, | started with the simplest case of no spatial structuring, no comrelati
between the measureX, ] and unmeasure&) variables, and no interaction effeéj (

= 0.0) in the additive generating moget 6,X, + 0. X, + 0 X+ 0 X X ,+¢&; 0 ~ 1.0,0
0.41,0, = 0.005, and),;= 0.0. If the estimating modgl= X, +8,X, + &' was used
becauseX, was unmeasured, all the unexplained variation ddew@s additive in the
new error term’ =& + 0.005%X,, which caused differences between the intercept
parameters for the generatidlg, and estimatings,, models but only small differences
between the slope parametérandg, (Fig.4.2). The estimating model had
homogeneous variances like the generating model but with bias in intercepts and no
bias in slopes. Thus, rates of change dug tstimated for any quantile or for the

mean with least squares regression would be similar in repeated random samipbng. T
example clarified why the heterogeneous constraint patterns investigatexddlyele

al. (1996), Cade et al. (1999), and Huston (2002) imply that there must be more than

just additive effects between the measured and unmeasured processes in the
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Figure 4.1. Cubic polynomial spatial trend surfased in simulations to generate
the values oK,, an unmeasured nonhabitat variable that was nohalte in
simulations. Surface plotted is for the expectaldi® ofX, = 2,000 + 4. 80NG

+ 7.9 AT+ 0.1LONG?- 0.2LAT 2+ 0.008.0ONG? + ¢, with € uniformly distributed

(-900, 900).
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Figure 4.2. (A) A samplen(= 150) from theN = 10,000 population for the additive
generating model = 6,X, + 6,X; + 0,X,+ 0;X, X, +€;6,=1.0,6,=0.41,6, = 0.005,
8;= 0.0, anct lognormally distributed (median = 6,= 0.75). Lines plotted are for
regression quantile estimatas({{0.95, 0.90, 0.75, 0.50, 0.25, 0.10, 0.05}) whea th
estimating model ig = BX, + B, X; + €. (B) Shows3,(1) andB,(t) deviating

more at higher quantiles)((6’s are dashed arféis are solid lines). The ordinary
Least squareB, = 11.326. (C) Showg,(t) and6,(t) deviating slightly for any
quantile. The ordinary least squafigs= 0.381.
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linear model.

A multiplicative interference interactiof,< 0.0) model with no spatial
structuring and no correlation between measureduanteasured variables wigh =
1.0,6,=0.41,0,= 0.0, and?,= -0.0001 was estimated without information abbet t
interaction effect, yielding an increasing variapeg¢tern similar to those discussed by
Terrell et al. (1996), Thomson et al. (1996), Cadal. (1999), and Huston (2002).
Here both intercepppf) and slopef,) parameters for the different quantiles of the
estimating model were biased relatived@nd@, of the generating model (Fig.4.3).
Values off, (1) at higher quantilex (> 0.90) were the least biased relativéto By
algebraically reexpressing the interaction effects associatedhsitneéasured habitat
variable in the generating model &s € 8,X,)X, it is possible to explain the source of
differing values ofp,(t) across quantiles. Ti#g(t) for higher quantiles are effects of
the measured habitat variabfg minus a small quantity, when the unmeasured variable
X, is close to its minimum of zero (-0.0004x 0). Thep,(t) for lower quantiles are
effects of the measured habitat variaBlaninus a large quantity, when the
unmeasured variablg, is close to its maximum of 4,000 (-0.0004,* -0.40). The
lognormal error distribution used in this example resulted in a mixture distribetien (
¢ + -0.000XX,; X,) that prevented the convergencegt) with 6, at highest quantiles.
However, when this example was simulated with the uniform error distribgi{on,
converged witl9, at the highest quantiles. The lesson is that we can never be sure of
the magnitude of bias associated with effects estimated for some upper qgantédes

in applications we will never know the exact distributional form of the errors.

135



25~

60/Bo

~~~~~~~~~~ ~

0.0 L \ I ! |
00 02 04 06 08 1.0

Quantile

Figure 4.3. (A) A samplen(= 150) from theN = 10,000 population for the interference
interaction generating modgk 6,X, + 8,X; + 0,X,+ 0;X,X, + € ; 6,=1.0,06,= 0.41,
6,=0.0,6;=-0.0001, and lognormally distributed (median = @,= 0.75). Lines
plotted are for regression quantile estimateS{0.95, 0.90, 0.75, 0.50, 0.25, 0.10,
0.05}) when the estimating modelys 3,X, + B,X; + €'. (B) Shows3,(1) and

B,(1) deviating slightly across the quantile$ (8's are dashed arféls are solid lines).
The ordinary least squarBg= 1.438. (C) ShowB,(t) and6,(t) deviating less for
higher quantiles. The ordinary least squddges 0.204.
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However, we can be confident that estimates for upper quantiles are less biased than

those for lower quantiles or for the mean (least squares regression) when the

assumption about interference interactions is reasonable, because higher quantile

estimates of,(t) include interaction effects at lower values of the unmeasured variable.
A multiplicative facilitation interactiondg> 0.0) model with no spatial

structuring and no correlation between measured and unmeasured proces&es with

1.0,6,=0.01,0,= 0.0, and?,= 0.0001 was generated and then estimated without

information about the interaction effect. This yielded an increasing varianeenpatt

similar to the previous example for the interference interaction (Fig. 4.4), fH@eat

lower quantiles1 <0.05) were the least biased relativéto Algebraically

reexpressing the interaction effects associated with the measured Venigale as in

the previous example, indicates tfigt)for higher quantiles are effects of the

measured habitat variabi, plus a large quantity, when the unmeasured variglke

close to its maximum of 4,000 (0.0004%- 0.40). TheB,(t) for lower quantiles are

effects of the measured habitat variaBlgylus a small quantity, when the unmeasured

variableX, is close to its minimum of zero (0.0004%- 0). The lesson is that

selecting lower or upper quantiles to provide less biased estimates of effemtseof

measured habitat variable when effects of unmeasured variables are ne@legible

habitat as the limiting constraint) is critically dependent on the assumed type of

interaction (+ for facilitation or - for interference) between the variablékile

interference interactions may be more common in ecological systemsatacili
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Figure 4.4. (A) A samplen(= 150) from theN = 10,000 population for the facilitation
interaction generating modgk 6,X, + 8,X; + 0,X,+ 0;X,X, +€; 6,=1.0,6,= 0.01,
6,=0.0,6;,=0.0001, and lognormally distributed (median = 6,= 0.75). Lines
plotted are for regression quantile estimatels{0.95, 0.90, 0.75, 0.50, 0.25, 0.10,
0.05}) when the estimating modelys= 3,X, + B,X; + €. (B) Shows3,(t) and

6,(1) deviating slightly across the quantile$ (8’s are dashed arféls are solid lines).
The ordinary least squar@g= 1.307. (C) Showp,(t) and6,(t) deviating less for
lower quantiles. The ordinary least squées 0.211.
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interactions might occur in situations where over short time spans the resources
provided by the habitat were insufficient to support the population, e.g., salmonid
populations reproducing in streams that lack the food or cover resources to sustain them
throughout their life cycle. A determination of whether interference or &t

interactions are likely requires knowledge obtained from sources other than the data
being analyzed.

A slightly more complicated interference interaction model was simulatbd w
varying amounts of correlation € 0.56 and 0.92) between the measured habitat
variableX; and the unmeasured variablgwith 6,=1.0,6,= 0.41,6,= 0.0, and
0,=-0.0001. The estimating model without the interaction effect now yields an
increasing variance pattern with slight nonlinearity evident f00.56 and a more
homogeneous variance pattern with stronger nonlinearityd.92 (Fig. 4.5). The
source of the nonlinearity is explained by recognizing that the interactionieffgct
X, but because of the correlation struct¥ses a function oiX,, e.g.,r = 0.56 was
achieved by the functioX, = 1,200 + 32.0 X, + uniform random number [-1200,

1200]. So the interaction effect was a function involvigig a quadratic polynomial.
Depending on the sign of the interaction coefficiégt &énd sign of the correlation)(
nonlinear functions may curve upward (+, + and -,-) or downward (+, - and -, +). The
lesson is that correlation between measured habitat resources and unmeasied varia
results in nonlinear response relationships, the stronger the correlation tee theeat
nonlinearity and less heterogenous the response. This suggests that some surrogate

variable that is strongly correlated with the unmeasured variables might beimac
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Figure 4.5. (A) A samplen(= 150) from theN = 10,000 population of grid cells from
the interference interaction generating model dgare 4.3 but with(X;, X,) = 0.56

and 0.92. Lines plotted are for selected regresguantile estimates when the
estimating model ig = B X, + B, X, + B,X,? + € because&, was not measured.

(B) ShowsB(t) andB,(t) deviating slightly for some quantiles)((8’s have dashed and
B’s have solid lines). (C) Shovii(t) and0,(t) deviating less for higher quantiles and
for r(X,, X,) = 0.92. (D) Show§g,(1) across quantiles with more negative estimates for
r(Xy, X;) = 0.92 indicating greater nonlinearity.
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for some of the variation in the modeled relationships.

The spatial coordinates of sample locations are a potential set of surrogate
variables for unmeasured processes that are spatially structured. Anentsfer
interaction model was simulated with no correlation between measured and unmeasured
variables but with the unmeasured variable related to latitudinal and longitudinal
coordinates (Fig. 4.1) ar¢ij = 1.0,6,= 0.41,6,= 0.0, and?,= -0.0001. The estimating
modely = X, 8. X, + BX XLAT + B X XLONG + 8 X XLAT 2+ B X xLONG? +
BX,xLONG?® + ¢’ had relatively homogeneous effects across quantiles for the
interaction of the measured habitat variable with cubic polynomial tggm# ) for
the spatial trend surface (Fig. 4.6). Variatiojfx) across quantiles was evident for
the measured habitat variable with less bias relatigeabhigher quantiles. Notice by
comparingb,(t) in Figure 4.6, where some of the effect of the unmeasured variable was
accounted for by the spatial trend, whtlft) in Figure 4.3, where it was not, that
variation in rate parameters across quantiles was less for the former itioneila
bias was greater for parameters at higher quantiles. Stronger spatiairstg of the
unmeasured variabl&{) would have produced less variationfifr) across quantiles
and less bias relative &. However, the amount of variance explaingti<{ 0.426)
with the spatial trend surface simulated was typical of the better reshiksed in
ecological investigations (e.g., Legendre et al. 1997).

In applications of the spatial trend surface, interactions of environmental
covariates and cubic polynomial terms usually were not estimated (Borcard 29|

Legendre et al. 1997, Legendre and Legendre 1998, Lichstein et al. 2002). My
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Figure 4.6. Parameters for tNe= 10,000 population of grid cells from the intedace
interaction generating model as in Figure 4.3 bitih W, = 2,000 + 4. 8ONG+ 7.9.AT
+ 0.1LONG?- 0.2LAT 2+ 0.009.0ONG? + ¢, with € uniformly distributed (-900, 900)
(0's have dashed lines); and for the estimating mgaeB X, + 3,X; + B,X;XLONG

+ BX XLAT + B, X;XLONG 2 + B X, XLAT 2 + BX,;xLONG 3+ ¢’ (B’s have solid lines)
used becaus¥, was not measured. (A) Sho®g(t) andp,(t) deviating slightly for
some quantilestj. (B) Shows,(t) andp,(t) deviating less for higher quantiles.

(C) - (G) show relatively homogeneous effectft), B5(T), B4(T), Bs(T), andPBg(T)
across quantiles for the interactions with the cydgitynomial spatial trend.



simulations suggest that estimating these interactions might be reasshablasing
spatial structure as a surrogate for important unmeasured processes. stere | al
simulated an estimating model with a full cubic polynomial without interactiotts wi
the measured habitat variable= B.X, +8.X,+ BLAT + BLONG+ B LAT? +

BLONG? + BLATXLONG +BLAT?xLONG +B8LATXLONG? +BJ AT? +

B, LONG? +¢’. Some of the parameters for the polynomial trend surface terms
exhibited heterogeneity across quantiles, {1t} for effects of the measured habitat
variable had similar differences across quantiles as in the more approprdte tr
surface with interaction effects model. The lesson is that with reasonable ambunt
spatial structuring of unmeasured processes it is still likely that conslielera
heterogeneity in responses remains in models that incorporate a spatial tracel surf
Bias in parameters is not necessarily lessened by including spatial trend.

4. Performance of Regression Quantile Testsfor Modelswith Hidden Bias
Confidence intervals for regression quantile estimates commonly are computed by
inverting rankscore testing procedures. Interval coverage for estimates ittade w
hidden bias in the models was estimated with a simulation experiment evalugteng Ty
| error rates of the asymptotic Chi-squarand permutatiof rankscore tests (Chapter
2). One thousand random samplesfer20, 30, 60, 90, 150, and 300 were drawn
from the finite population oN = 10,000 blocks for the interference interaction
generating model with no spatial structure, no correlation between measyraad
unmeasuredX;) variables, and, = 1.0,6,= 0.41,0,= 0.0, and? ;= -0.0001 as in

Figure 4.3. Estimates @f(t) andg,(t) were made for each sample, and null

143



hypotheses Hp (1) =&4t) , and H, ;8 (t) = & {t) were evaluated, wheig(t) were the
parameter values 5.0662, 2.7230, 2.0720, 1.4503, 1.1368, 0.9186, 0.7304, 0.5935, and
0.3784 and,(t) were the parameter values 0.3445, 0.3533, 0.3464, 0.3034, 0.2139,
0.1170, 0.0628, 0.0431, and 0.0227 corresponding10.99, 0.95, 0.90, 0.75, 0.50,
0.25, 0.10, 0.05, and 0.01 quantiles, respectively (Fig. 4.3). This simulation approach
evaluated whether the confidence interval coverage estimated by inverting the
rankscore tests included the parameter vayl@sandg,(t) with the stated confidence
level (1 -a) given that the error distribution included effects of the unmeasured
variable. Section 3 already established the degreghpandg,(t) were biased
relative tod,(t) andé(z).

Unweighted estimates and rankscore tests provided liberal error rates for H :
LSi(t) = &,(r) for T < 0.90, consistent with simulations when the model form was
completely specified and heterogeneity was >5 standard deviations across the domai
of X (Chapter 2). It was only at higher quantites0.90, where there was a reduced
rate of change betweg@(t) (see Fig. 4.3), that unweighted estimates and rankscore
tests provided reasonable coverage (Fig. 4.7). The permufateotkscore test
maintained better Type | error rates thanThankscore test for smaller samples at
more extreme quantiles (Fig. 4.7), similar to simulations without hidden bias (€hapte
2). Unweighted estimates amdankscore tests provided good Type | error rates for H :
Bo(t) =&(1) across all but the most extreme quantites (.01 and 0.99), whereds
rankscore tests had slightly liberal error rates because the permutataarstused did

not account for all the sampling variability when null models were forced through the
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origin (Fig.4.8), similar to simulations in Chapter 2. The double permutation scheme
improved Type | error rates for the permutatiotest as demonstrated below for
weighted estimates @k (7).

Weighted estimates and rankscore tests were simulated by constructihtsweig
based on the regression quantile parameters fod th&0,000 finite population (Fig.
4.3). The pattern of increasifig(t) with increasing was not a simple location-scale
form because differences ff(t) were not constant across glalthough they differed
by a fairly constant amount for 0.20cr < 0.80 (Fig. 4.3). A variant of the bandwidth
approach based on changegjft) andg,(t) near the quantiler) of interest (Koenker
and Machado 1999) was used to provide weights for weighted estimates and rankscore
tests in simulations. Weights were, thus, based oN th&0,000 population and not
estimated for different samples to avoid undue complexity in the simulation
experiment. Weights were computed by taking the average pairwise differéneeroe
Bo(t) and betweefi (1) in an interval oft + 0.01 fort = 0.05, 0.10, 0.90, and 0.95 and
in an intervak = 0.005 fort = 0.01 and 0.99. Far= 0.25, 0.50, and 0.75 there was
almost constant rate of change in the parameters, and weights were computed based on
pairwise differences in the intervak [0.25, 0.75]. Weightsy(t), were the reciprocal
of the average pairwise differences divided by the associated interval widtmused i
their computation (0.01, 0.02, or 0.5@)0.99) = (48.825 + 0.3%7)*, w(0.95) =
(9.195 - 0.04X,)™*, w(0.90) = (3.270 + 0.054,)*, w(0.75) =w(0.50) =w(0.25) = (0.286
+.0.110<))™, w(0.10) = (0.900 + 0.129)*, w(0.05) = (0.774 + 0.169)*, andw(0.01)

= (2.589 + 0.28%,)*. Weightsw(r), were then multiplied by andX to
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Figure 4.7. Estimated Type | error ratesdor 0.05 (open) and 0.10 (solid); for the
T (triangles) and permutatida(circles) rankscore tests for,H3,(t) = &,(1) in the
estimating modey = B,X, + 3,X, + €', where,(1 ) were the parameter values
0.344, 0.353, 0.346, 0.303, 0.214, 0.117, 0.06813).and 0.023 for = 0.99, 0.95,
0.90, 0.75, 0.50, 0.25, 010, 0.05, and 0.01 foNke10,000 grid cells generated

by the model in Figure 4.3; and for= 20, 30, 60, 90, 150, and 300. 1,000 random
samples were used for eath
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Figure 4.8. Estimated Type | error ratesdor 0.05 (open) and 0.10 (solid); for the
T (triangles) and permutatidn (circles) rankscore tests for,H3,(t) = &y(T) in the
estimating modey = B,X, + B, X, + €', where¢ (1) were the parameter values
5.066, 2.723, 2.072, 1.450, 1.137, 0.919, 0.598,0a878 fort = 0.99, 0.95,

0.90, 0.75, 0.50, 0.25, 010, 0.05, and 0.01 folNke10,000 grid cells generated

by the model in Figure 4.3; and for= 20, 30, 60, 90, 150, and 300. 1,000 random
samples were used for eatch
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compute weighted regression quantile estimates and their associated ratgdsts@e
in Chapter 2.

Type | error rates for HA,(t) = &,(t) were maintained for the weight@dest
across all quantiles except for 0.01 (Fig. 4.9). The weightédtest had slightly
conservative error rates compared to the weightest except fot = 0.90 where they
both maintained correct levels because rates of change in agjgceand affects of
the weighting were minimal. At extreme quantiles and smaliee weighted test
became extremely conservative compared to the weightest. The permutation
scheme based on the weighted regression quantile estimates clearly woutdrioemefi
some adjustment because weighted estimates of the null model were forced through the
origin. The double permutation scheme (Chapter 2) applied totést provided
improved Type | error rates compared to the standard permutation scheme, although
probabilities became conservative at more extreared smallen (Fig. 4.10).
Weighting provided minor improvements to error rates fpiph(t) = () for theT
test and little improvement for the standard permutditest for most quantiles (Fig.
4.11). Weighting actually made the error rates for the 0.01 quantile more unstable. The
double permutation scheme provided minor improvements fdt tast for this
hypothesis.

Type | error rates for the cubic polynomial trend surface were evaluated for the
interference interaction model with no spatial structuring (Fig. 4.3). Estrogfg(t),

B(©), BAD), BAD), BAT), B4, B 1), B {1), B {1). B ), andp (1), were made for each

sample and the null hypothesis B,(t) =f(t) = ... =8,{t) = 0 was tested, whef(1)
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Figure 4.9. Estimated Type | error ratesdar 0.05 (open) and 0.10 (solid); for the
T (triangles) and permutatidfa(circles) rankscore tests for,HvB3,(T) = &,(T) in the
estimating modelvy = WB,X, + W3, X; + we', whereg,(t ) were the parameter

values 0.341, 0.354, 0.345, 0.302, 0.217, 0.1268).0.048, and 0.025 for= 0.99,
0.95, 0.90, 0.75, 0.50, 0.25, 010, 0.05, and @O1EN = 10,000 grid cells generated
by the model in Figure 4.3; and fo= 20, 30, 60, 90, 150, and 300. 1,000 random
samples were used for eath
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Figure 4.10. Cumulative distributions of 1,000rested errors for the Chi-squared
distributedT (dashed line), permutatidh(square dotted line), and double
permutatiorf (solid line) rankscore tests for,Hv3,(T) = &,(t) forn= 60 in the
estimating modelvy = w3 X, +W3,X; + we', whereg,(t) were the parameter values
0.354, 0.345, 0.217, 0.126, 0.068, and 0.048 f00.95, 0.90, 0.50, 0.25, 010, and
0.05 for theN = 10,000 grid cells generated by the model in FEguB. Fine dotted line
is the expected cdf of a uniform distribution. Se fer description of weighta(t).
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Figure 4.11. Estimated Type | error ratesdcr 0.05 (open) and 0.10 (solid); for the
T (triangles) and permutatidh(circles) rankscore tests for,HvB,(T) = &y(T) in the
estimating modelvy = wB X, + W3, X, + we', wherey(t) were the parameter

values 5.134, 2.693, 2.110, 1.478, 1.084, 0.8@243).and 0.355 for = 0.99, 0.95,
0.90, 0.75, 0.50, 0.25, 010, 0.05, and 0.01 foiNtke10,000 grid cells generated

by the model in Figure 4.3; and for 20, 30, 60, 90, 150, and 300. 1,000 random

samples were used for eath
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- f1o(t) were parameters (all zero) for the 9 terms of the full cubic polynomial trend
surface. Here Type | error rates were well maintained by both @neF rankscore

tests because under the alternative model there was no relation between thieesmhtia
surface and the response for any quantile (Fig. 4.12). The permutation evaluation of the
F statistic provided better Type | error rates than the asymptotic Chi-squaratieva

of theT statistic for smallen at more extreme quantiles, as also observed for models
without hidden bias (Chapter 2).

A small simulation experiment was conducted to evaluate power of the
regression quantile estimates and rankscore tests to detect spatial tiarebsur
Samplesrf = 1,000) were taken from the spatially structured, interference interaction
population ofN = 10,000 blocks (Fig. 4.6), and the modet f,(t)X, +8,(1)X, +
Bo1)X XLAT + B{1)X,XLONG + B f1)X XLAT? + B (1)X XLONG? + § {1)X xLONG?
was estimated and rankscore tests conducted,fgh,td) = (1) = ... =8t) = 0.

Because the simulated effect of the spatial trend surface was homogeneais acros
guantiles, no weighting was used in the simulations. Power greater than 80% with
a = 0.05 was achieved for> 150 fort = 0.05 - 0.90. Power was 52% for 0.95,

30% fort = 0.01, and 7% for = 0.99 ain = 150. The- test had slightly greater power
than theT test fort = 0.01 and 0.99 at < 150 and equivalent power otherwise.

5. Example Application

Legendre et al. (1997) and Legendre and Legendre (1998:745-746) evaluated the
contributions of spatial trend, physical habitat variables, and biotic interactions to

bivalve mussel distribution and abundance in a New Zealand harbor. Physical habitat
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Figure 4.12. Estimated Type | error ratesdar 0.05 (open) and 0.10 (solid); for the
T (triangles) and permutatidh(circles) rankscore tests for,H3,(T1) =B4(1) =, ... , =
B,o(T) = 0 in the estimating modgl= B X, + BX; + B,LAT + B,LONG +B,LAT? +
B-.LONG? + B,LATXLONG + B,LAT2XxLONG + BgLATXLONG? + B,LAT 3 +
B,,LONG?® +¢', for 1= 0.99, 0.95, 0.90, 0.75, 0.50, 0.25, 010, 0.08,&01 for the

N = 10,000 grid cells generated by the model in FeguB; and fon = 20, 30, 60, 90,

150, and 300. 1,000 random samples were use@débmne
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variables included sediment characteristics, bed elevation, and hydrodynamicasieasur
likely to affect larval deposition, transport of juveniles, food supply, and feeding
behavior. There were many strong correlations among the physical habitat variables
considered. Biotic interactions considered adult-juvenile interactions by adding
abundance of bivalves in different size classes to the models. Effects of atsgadial
surface, abundance of competitors, and habitat conditions were partitioned by
considering nested sets of models in a linear least squares regression @.egahdr
1997), following procedures of Borcard et al. (1992). | explored relationships for one
speciesMacomona liliana using similar procedures but estimated with quantile
regression. The dependent variable was 22-23 January 1994 colésa@ihona>15

mm size class in 0.254n quadrats randomly located within 200 grid cells on a 250 m x
500 m area on the sandflat of Wiroa Island, Manukau Harbor, New Zealand.

Similar steps in modeling bivalve counts used by Legendre et al. (1997) were
followed but several adjustments were made because | used regression quantile
estimates and because | had a slightly different philosophy regarding modibselec
Because the regression quantile estimates were intended to model heterogeneous
variation in response distributions, | did not normalize bivalve counts by taking
logarithms as did Legendre et al. (1997). When selecting polynomial terms to include
in the final spatial trend surface model, | considered models with all lineas; talflm
linear and quadratic terms; and all linear, quadratic and cubic terms; whickdasult
comparisons of three spatial trend models. | did not eliminate any individual monomial

term from the set of linear, quadratic, or cubic polynomial terms.
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| usedR!(t) coefficients of determination (Koenker and Machado 1999) to
compare fits of different regression quantile models aares3.05 - 0.95 by
increments of 0.05. HoweveRi() like R*from least squares regression can only
increase with increasing number of parameters and, thus, it was desirable to have a
statistic that adjusts for inclusion of additional parameters relative jolsaime.
Therefore, | selected among models using a small sample size corrected gktlse
Akaike Information Criterion (AIC ) developed by Hurvich and Tsai (1990) for the 0.50
regression quantile (i.e., least absolute deviation regression) and extended to other
quantiles; AIC ) = 2n x In(SAR7)/n) + 2p(n/(n - p - 1)), whereSAHT) was the
weighted sum of absolute deviations minimized in estimatingtthguantile
regression witlp parameters (including 1 for estimatia)y Appendix 4.1 describes
computations foR'(t) and AIC, ) and their justification. | computed differences
(AAIC (1)) between AIC £) for more complex models and the simplest model with just
a constantf) to facilitate comparisons among models in a fashion comparable to using
coefficients of determination.

The modeling steps that Legendre et al. (1997) and | used were to (1) select an
appropriate polynomial spatial trend surface model for bivalve counts; (2) select an
appropriate model for bivalve counts as a function of the physical environmental
variables; (3) test whether the spatial trend surface explained a signifacztion of
additional variation given that the physical environmental variables were airetudy
model; (4) test whether the counts of competitors (bivalves in larger sizesjlass

explained a significant fraction of additional variation given that the physical

155



environmental variables were already in the model; and (5) test whether the spatia

trend surface explained a significant fraction of additional variation giverhthat t

physical environmental and biological (abundance of competitors) variables were
already in the model. Becaus#éacomona>15 mm had no competitors by this

protocol, steps (4) and (5) were not conducted for this size class. | present a condensed
summary of results for counts &lacomonad.5-2.5 mm where steps (4) and (5) were
conducted.

Legendre et al. (1997) fit a spatial trend surface model first to determine
whether there was any spatial structuring at the scale of the study plot tessotdia
effects of ecological processes. However, | also consider the spatial trexwt sigfa
potential surrogate for effects of unmeasured processes to be included in models afte
having accounted for effects associated with the measured variables.

5.1 Spatial Trend Surface

Plots ofR'(t) coefficients of determination and AI€) @cross = 0.05 - 0.95 indicated

that the linear + quadratic + cubic polynomial explained the greatest proportion of
variation in counts oMacomona>15 mm and was the preferred trend surface model
(Fig. 4.13). Trend surfaces plotted for the 0.90, 0.50, and 0.10 quantiles (Fig. 4.14) had
similar variation along the northwest to southeast axis as the least sqgegssioa

surface estimated by Legendre et al. (1997), but the regression quantile sstimate
indicated greater variation associated with counts in the northwest corner anatedsoc
differences in rates of change in the spatial trend for different quantilest{adternd

surfaces in Figure 4.14 are not parallel in all regions). Regression quantile
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Figure 4.13.RY(1) coefficients of determination and differences ikakke

Information Criteria DAIC (1)] for the linear (diamonds), linear + quadratita(s),
and linear + quadratic + cubic (circles) polynonsphtial trend surfaces for= 0.05

to 0.95 (by increments of 0.05) regression quantfe8lacomona liliana>15 mm
counts in 0.25-rhquadratsif = 200), 22-23 January 1994, on the sandflat of Wiroa
Island, Manukau Harbor, New Zealand (data from Legerdral. 1997). All

AAIC (1) were computed by subtracting the A(Q for the model with just an
intercept B,) from the AIG(t) for the polynomial models.
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estimates established that variation in abundance and not just mean abundance of
Macomona>15 mm had a spatial trend on the Wiroa sandfé¢r) coefficients of
determination indicated substantially more variation explained at higher tleameat |
guantiles (Fig. 4.13). An ordinary least squares regressiglaodmona>15 mm

counts (not log transformed) on the same cubic polynomial h&d=a0.371, which

when returned to original units rather than squared units by 1R¥}3>{Ehrenberg
1975:233) indicated only 0.201 proportion of the variatioklatcomona>15 mm

counts was explained by the mean trend surface function. This was similar toowariati
explained by the central (0.40c< 0.60) regression quantile estimates but less than
explained by higher quantiles (Fig. 4.13).

5.2 Physical Habitat

Legendre et al. (1997) found only two physical habitat variables explained any of the
variation in In mean counts dlacomona>15 mm: bed elevation (m) and percent of
time the plot was covered by >20 cm of water during spring tide. These also were the
only physical habitat variables that | found explained any of the variation in quantiles of
largeMacomona However, these two variables were near perfectly linearly correlated
(r =-0.999), which made physical sense because greater bed elevation is dir¢etly rela
to less water depth during high tides. |, therefore, chose to use only bed elevation in the
physical habitat model. Legendre et al. (1997) used a cubic polynomial of bed
elevation to model the nonlinear response of |dMtgeomonacounts (Fig 4.15). |

initially considered this model too but also examined a simpler quadratic polynomial

and compared models basedRi(r) and AIG ¢). There was very little improvement
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Figure 4.15. Counts #éflacomona liliana>15 mm in 0.25-rhquadratsif = 200),
22-23 January 1994, on the sandflat of Wiroa Island,Nan Harbor, New Zealand,
by bed elevation (m). Solid lines are 0.90, 0&6@ 0.10 regression quantile
estimates oMacomonacounts as a quadratic function of bed elevatione$ with
small dots connect upper and lower Working-HotglB9% simultaneous confidence
intervals for predicted 0.90 (upper) and 0.10 (Igwegression quantiles at 28
selected values of bed elevation.
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in coefficients of determination by going to thémucompared to the quadratic
polynomial (Fig. 4.16). Differences mAIC (1) supported use of the cubic polynomial
of bed elevation only for 0.80 - 0.85 quantile&n examination of the cubic
polynomial model of bed elevation suggested thgitesesion quantile fits that were
better with the cubic term were greatly influenbgahe outlying minimum elevation
value of 1.95 m. Removing this influential valued estimating quadratic and cubic
polynomial models and associated fit and modeltsele statistics again indicated
even less support for including the cubic bed glemaerm.

The quadratic response of lafgacomonao bed elevation captured the higher
counts at lower and higher bed elevations and &sang variation in counts at higher
elevations (Fig. 4.15). Unweighted estimates &% 8onfidence intervals for linear
(b)) and quadratid,) terms indicated increasingly negative linear gxogeasingly
positive quadratic terms with increasingbove 0.50 (Fig. 4.17). Nonlinear changes in
largeMacomonawith respect to bed elevation were greater fonéigjuantiles.
Although heterogeneity in counts across bed elenatias not extreme, | constructed
weighted regression quantile estimatestfer0.05 - 0.95 by increments of 0.05, where
weights were estimated separately for each indaliquantile with a variant of the
bandwidth approach used by Koenker and Machad®§19%sed the Hall and
Sheather (1988) bandwidth selection rule recomnebgi&oenker and Machado
(1999) but did not use their approach of takinfedénces between estimates for the
highest and lowest quantile within the bandwidtistead, weights were computed by

taking the average pairwise difference betweeunralleighted quantile estimates for
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Figure 4.16.R(1) coefficients of determination and differencesAikaike
Information Criteria DAIC (1)] for the linear + quadratic (squares) and linear
guadratic + cubic (triangles) functions of bed @eon (m) fort = 0.05 to 0.95
(by increments of 0.05) regression quantiledi@comona liliana>15 mm counts
in 0.25-n7 quadratsif = 200), 22-23 January 1994, on the sandflat of Wirdanid,
Manukau Harbor, New Zealand. ANAIC (1) were computed by subtracting the
AIC (1) for the model with just an interce from the AIG(t) for the
polynomial models.
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Figure 4.17. Estimates for intercep(fr)], linear [b,(1)], and quadraticlf,(t)] terms
for regression quantiles dlacomona liliana>15 mm counts in 0.25-fguadrats
(n=200), 22-23 January 1994, on the sandflat of Wirtenk$, Manukau Harbor,

New Zealand, as a quadratic function of bed elewatm) for both unweighted and
weighted models. Solid lines are step functionparbimeter estimates by quantiles

(1), all for unweighted estimates and for 0.05 - 0.95 by increments of 0.05 for
weighted estimates. Dashed lines connect pointwi% @@nfidence intervals based

on inverting thel rankscore tests far= 0.05 - 0.95 by increments of 0.05.
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by(1), by(1), andb (t) within the intervak + h(t), whereh(r) was the bandwidth for a
specified quantile. This reduced the number ohheg weights due to crossing of
regression quantile estimates at extreme regiotieealesign matrix that occurred with
the method used by Koenker and Machado (1999, sstiall constants had to be
added to the average pairwise difference$fai) to assure positive weights for a
couple of quantiles. Example calculations forweghts are in Appendix 4.2.

Weighted estimates for the quadratic polynomiahgeof bed elevation
followed a similar pattern of changes with quasties the unweighted estimates,
although weighted estimates smoothed over a tlgtail because they were only done
for 19 increments oft between 0.05 and 0.95 (Fig. 4.17). The 90% centid
intervals for the weighted estimates were slightdyrower than those for the
unweighted estimates at most higher quantiles. Wnsually large upper endpoint of
the interval for the unweighted estim#&t€0.60) was eliminated in the weighted
estimate. The overall pattern and inference faghted estimates did not differ
substantially from those for unweighted estimat@is was consistent with the
moderate amount of heterogeneityMacomona>15 mm counts across bed elevation
(Fig. 4.15).

A simultaneous 80% prediction interval on the car@0% ofMacomona>15
mm as a function of bed elevation was estimatecbigtructing simultaneous
confidence intervals for the 0.10 and 0.90 regoesguantile estimates at 25 values of
bed elevation between 2.10 and 3.30 m (Fig. 4. T8 simultaneous prediction

intervals emulated the Working-Hotelling simultans@onfidence intervals (Neter et
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al. 1996:234) for estimatédxy(t) with bed elevation shifted by the 25 selectedieslfor
prediction; the zero intercept was shifted to cgpomd to the selected values of bed
elevation (Chapter 2). Two-sided intervals wenestaucted by inverting the weighted
guantile rankscore test with ar= 0.0316 [1 - prob=((3 x F(0.80, 3, 197)), 1, 197)]
with the upper part of the interval fbg(0.90) and the lower part of the interval for
b,(0.10). The interval displayed in Figure 4.15 whss, a statement about where the
central 80% oMacomona>15 mm would be expected to occur with respebetb
elevation in 80% of repeated random samples. thatelower intervals fot = 0.10

and bed elevation2.5 m extended below zero counts, a nonsensioa¢valhe wide
intervals here were likely due to fewer observatiaith bed elevations2.5 m and
because the lower portion of the distribution oféMacomonacounts were not as
well defined as the upper part. Slight irreguiesitin the upper and lower simultaneous
confidence intervals should not be over interpretethey likely occurred due to the
vagaries of interpolating between discrete proliadslassociated with the rankscore
test statistics (Chapter 2). Use of a more strihgenfidence level such as 90%
required smaller individual's that resulted in intervals with greater irregities.

5.3 Physical Habitat Plus Spatial Trend

Including the cubic polynomial spatial trend sugaadicated that there was additional
variation inMacomona>15 mm abundance that was spatially structurent aft
accounting for effects of bed elevation (Fig. 4.18hanges IinAIC (1) clearly
supported the model with bed elevation and thdapgegnd surface over the model

with just bed elevation (Fig.4.18), but the relatsampling frequency probabilities for
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Figure 4.18.RY(1) coefficients of determination and difference®\kaike Information
Criteria [AAIC (1)] for the physical habitat model as a quadratiection of bed
elevation (squares) and for the physical habitatibic polynomial spatial trend
surface (circles) for = 0.05 to 0.95 (by increments of 0.05) regressiocangiles of
Macomona liliana>15 mm counts in 0.25-fguadratsif = 200), 22-23 January 1994,
on the sandflat of Wiroa Island, Manukau Harbor, New Zedl AllAAIC (1) were
computed as in Figure 4.13. Symbol sizesRt(r) are proportional in size B(H:
linear + quadratic bed elevation parameters = Opfgsical habitat model (squares)
andP(H,: cubic polynomial spatial trend surface paramete@linear + quadratic bed
elevation parameters) (circles) from the permutaBgankscore test; largest symbol
is for P > 0.20 and smallest is fét < 0.01. P for T rankscore tests were similar.
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lower @ < 0.20) and highert(> 0.85) quantiles indicated the joint effects of the
polynomial spatial coefficients were not differé&mm zero. Because bed elevation
itself was spatially structured (Legendre et aB7)9estimated effects of bed elevation
after adjusting for spatial trend were attenuatediraversed in sign because they were
confounded with other processes associated witiasp@nd (Fig. 4.19). In this
model, 90% confidence intervals for bed elevatiaiuded zero for all quantiles (Fig.
4.19). Here only unweighted estimates were usetheprevious analysis on bed
elevation suggested effects of heterogeneity wetrgmat enough for weighted
confidence intervals to differ substantially fromweighted ones. The cubic
polynomial spatial trend surface model explainearlyeas much variation as the model
that included quadratic bed elevation and cubitispaend (compare Figs. 4.13 and
4.18). The cubic polynomial spatial trend surfgiven effects of bed elevation
retained most of the northwest to southeast vanastimated by the spatial trend
surface alone, except that some of the variatidharsoutheast corner was attenuated
(compare Figs. 4.19 and 4.14). WhenRAe 0.33 for the physical habitat and spatial
trend of In mean abundance of lalgacomonaestimated by Legendre et al. (1997) is
converted into original units [0.18 = 1 - (1 - %3 Ehrenberg 1975:233), it is obvious
that the regression quantile estimates (not ircéte3 for a similar model explained a
greater proportion of variation acrass0.40 (Fig. 4.18).

5.4 Summary for Macomona 0.5-2.5 mm

Abundance oMacomona.5-2.5 mm was determined for 3 cores totaling-0®4

within the 0.25-md primary quadrats (Legendre e1887). Counts ranged from 0 to
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Figure 4.19. (A) Estimates for linedn, (t)] and quadraticld,(t)] terms for regression
quantiles oMacomona liliana>15 mm counts in 0.25-guadratsif = 200), 22-23
January 1994, on the sandflat of Wiroa Island, ManukatétaNew Zealand, as

a gquadratic function of bed elevation (m) afteuatipg for the cubic polynomial
spatial trend surface. Solid lines are step fonstiof parameter estimates by
guantiles t) and dashed lines connect pointwise 90% confidarteevials based on
inverting theT rankscore tests far= 0.05 - 0.95 by increments of 0.05. (B) The 0.90,
0.50, and 0.10 cubic polynomial spatial trend sug$aafter adjusting for the quadratic
function of bed elevation at the mean value off2.9View is from the southwest.
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12. Following the previous steps outlined inclgpsteps 4 and 5 that added effects of
biological competitors, | estimated regression gjiesfor counts (not In counts) of
smallMacomonaas a function of 4 physical habitat variableshysical habitat
variables plus quadratic spatial trend, 4 physieditat variables plus abundance of 3
biological competitors, and 4 physical habitat ables plus abundance of 3 biological
competitors plus quadratic spatial trend (Fig. %#.ZDomparisons oR'(t) and AIC )
selected the same variables used by Legendre(&B8I7) for their mean In abundance
model, with several minor changes. | retainedeaths of the quadratic polynomial
spatial trend surface. | did not consider inahgdooth bed elevation and proportion of
the time the plot was covered by >20 cm water dusjpring tide because they were
near perfectly correlated. The 4 physical halisaiables used were a linear function
of bed elevation (m), shell hash (g, not squaré traosformation), peak ebb-tide bed
shear stress (N:fn ) and peak flood-tide bed shesmsstN-rt , not log transformed).
Transformations used by Legendre et al. (19973lhetl hash and flood-tide shear
stress were not required for obtaining reasonageession quantile estimates. The 3
variables measuring potential biological competitocluded counts (not In
transformed) oMacomona2.5-4.0 mmAustrovenus stutchbur@i5-2.5 mm, and
Austrovenu.5-4.0 mm.

Low proportion of variation explained by all modatslower quantilest(<0.20)
was due to the proportion of zero counts that wevdeled as well with just a constant
(Fig. 4.20). AftelR'(t) increased up to= 0.35, there was a fairly constant

amount of variation explained by all higher quastitegardless of the model. This was
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Figure 4.20.RY(t) andAAIC (1) for the physical habitat model as a linear fusrcof bed elevation (m),
shell hash (g), ebb-tide shear stress (R;rand flood-tide shear stress (NAnfsquares); for the quadratic
polynomial spatial trend surface (diamonds); far physical habitat + quadratic spatial trend serfac
(circles); for the physical habitat + biologicalngpetitors as a linear function Afistrovenu®.5-2.5 mm,
Austrovenu2.5-4.0 mm, anélacomona2.5-4.0 mm counts (triangles); and for the phydiedditat +
biological competitors + quadratic spatial trendace (stars) for = 0.05 to 0.95 (by increments of 0.05)
regression quantiles dacomona lilianad.5-2.5 mm counts in 0.042muadratsif = 185), 22-23 January
1994, on the sandflat of Wiroa Island, Manukau Harbiaw Zealand. AIBAIC (1) were computed as in
Figure 4.13. Symbol sizes fB#(t) are proportional in size #(H,: 4 physical habitat parameters = 0)
(squares)P(H,: quadratic spatial trend surface parameters di@jronds)P(H,: quadratic spatial trend
surface parameters = 0|4 physical habitat paras)egrcles);P(H,: 3 biological competitor parameters
= 0}4 physical habitat parameters) (trianglP¢l,: quadratic spatial trend surface parameters = 0|4
physical habitat + 3 biological competitor paramstéstars) from the permutatiéirankscore test; largest
symbol is forP = 0.20 and smallest is fét< 0.01. P for T rankscore tests were similar.
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consistent with the low range of variation in cauotMacomona).5-2.5 mm.
Estimated effects for physical habitat variablesenrcreasingly negative for shell hash
with increasing, positive for flood-tide shear stress and incregéort >0.80,
increasingly positive for ebb-tide shear stressoup= 0.80 then increasingly negative
for t >0.80, and positive for bed elevation and incregagort >0.60. Estimated effects
for abundance of biological competitors were pesiaind increasing withfor
Macomona2.5-4.0 mmAustrovenu.5-4.0 mm, andustrovenu®.5-2.5 mm. My
estimated quantile regression effects of biologtcahpetitors were positive as were
effects estimated by Legendre et al. (1997), suggethat they were not measuring
competition for resources but may have been sugedar unmeasured physical
factors that affected deposition and settlemeiiv@niles similarly across taxa.
Differences in quantile regression models of abandgarallel those of the
mean In abundance regression models estimatedgantee et al. (1997) except that
the regression quantile estimates suggested thatiga due to quadratic spatial trend
existed even after including the 4 physical halaitet 3 biological competitor variables.
However, relative sampling frequency probabilitessociated with > 0.75 suggested
the joint effects of quadratic polynomial terms vapt different from zero when
considering spatial trend added to either the mattél just physical habitat or the
model with physical habitat and biological competabundance (Fig. 4.20). The
guadratic spatial trend surface after adjustingpfoysical habitat and abundance of
potential biological competitors had its main afi€hange from the southeast to

northwest with greater variation in abundance engbutheastern part of the sandflat.
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Transforming=? = 0.41 estimated by Legendre et al. (1997) forptigsical habitat,
biological competitors, and quadratic spatial trematlel to original units [0.23 =1 - (1
- 0.41¥°] indicated that the amount of variationlaikped by the mean In abundance
model was comparable to that explained for moshtjea ¢ > 0.35) of abundance

with a similar model (Fig. 4.20). However, Legemét al. (1997) concluded that
guadratic spatial trend did not explain a signifigaroportion of variance in mean In
abundance after accounting for physical habitattaoldgical competitors, whereas my
estimates indicated that it did for most quantftes 0.75) of abundance.

6. Discussion

The example simulations demonstrated how heterogsrend nonlinear relations in
habitat models can easily arise from confounding) wome important but unmeasured
processes. More complicated arguments are noireelio explain why heterogeneity
and nonlinearities are so common in statistical @edf animal responses to their
habitat resources. Although the dimensions ofikasured habitat variables) and
the unmeasured limiting factofX,) were kept to single variables for my simulation
purposes, it is reasonable to extend interpretatidhese simulation results to greater
dimensions by thinking of; andX, as being the composite additive effect of >2
variables. More complicated interactions involvbah interference (- coefficients)
and facilitation (+ coefficients) interactions skebbe additive and may have attenuated
overall effect depending on the magnitude of tlpasse effects. My presentation of
the simulations focused on confounding with unmessuariables not related to

habitat resources. It is easy to extend my reanlsinterpretations to situations where
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confounding occurs with some important habitat weses that were not measured and
included in the model used for estimation.

The philosophy embodied in my simulations reflegteav that most ecological
relations have an appearance of randomness naidsetizey are inherently random but
because we are always estimating them with incampiéormation (Regan et al.
2002). As long as random variation induced by mgsgformation is small and
homogeneous, conventional regression estimatioregroes (e.g., least squares) may
provide useful, reasonable estimates of conditicglationships. When missing
information is for processes of substantial impwe&ato an organism, it is reasonable to
expect large, heterogeneous random variation amdages with hidden bias. While all
organisms are dependent on some suite of resoobtaised from their habitat, at
many times and locations other factors may act@aigrt more influence on organism
growth, survival, reproduction, and dispersal, cagia perceived disconnection
between the organism and the requisite habitatiress. Garshelis (2000) and
Morrison (2001) both have argued for improving knowledge of animal habitat
relations by focusing modeling efforts on more #pedly defined resources and
relating them to demographic parameters such assatiand reproductive rates that
ultimately contribute to differences in abundan@&ese are reasonable suggestions.
But, neither a more focused definition of what d¢iates a habitat resource or
measuring alternative demographic parameters lwiiigate issues of hidden bias due
to confounding between measured habitat covareatdsinmeasured ones associated

with other processes.
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Inference procedures based on rankscores for egneguantile estimates
provided valid intervals reflecting the samplingtdbution of parameter estimates for
the measured habitat processes, but the paramkdarly were biased relative to the
parameters generating the responses. In apphsatihe degree of hidden bias will be
greater or lesser for different quantiles dependimghe nonestimable interaction
effects and unknown error distributions. If ipigssible to rule out certain types of
interaction effects (e.g., facilitation) with unnse@ed processes, then we might
profitably focus estimation and inference proceduog quantile regression at one end
of the probability distribution (e.g., upper quéeg). In the absence of such knowledge,
it would appear prudent to obtain estimates anfid®mce intervals across the entire
interval of quantiles that provide reliable estigsafe.g., 0.05 - 0.95). | encourage the
use of prediction intervals, and especially sirmétaus prediction intervals or tolerance
intervals, as a strong antidote to overzealousaapens that any habitat model can
provide precise predictions. It simply is not k@zable to expect that habitat models
should provide very precise predictions when thejugle many other important
processes. However, this does not imply that upeddlictions are impossible with
habitat models, especially for management or coaien purposes. We simply have
to use better procedures for characterizing intervBresponse such as those presented
here and have more realistic expectations abodiqtireg changes in populations due
to changes in habitat, a process that interactsatiter processes that we often barely

understand or know how to measure.
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Prediction and tolerance intervals provide confaestatements related to
individual observational units (Vardeman 1992).e3é&were areal plots in my
simulations and example application. Predictiot xherance intervals based on my
regression quantiles are semiparametric in natecause they don’'t assume a specific
parametric form for the unknown error distributiofhey are likely to be much more
informative for characterizing the real uncertaimyabitat models and for making
predictions useful for management or conservatiopgses than confidence intervals
on mean rate parameters or responses. We nev@wel@gsmean response across
observational units, only responses for individuats. Management or conservation
actions are implemented on individual units of anea landscape. Estimating an
interval of responses likely for these individuedas provides more knowledge about
what outcomes might be realized than is provideddnfidence intervals associated
with mean responses or any other individual parame$cientific attempts to improve
predictions from habitat models are based on me®sabserved outcomes relative to
predictions necessarily obtained from measuren@nisdividual units of area.
Understanding the contexts where habitat moddlsfaucceed as predictors of
population change can only be gained by consideamgextual information for
individual units of area on landscapes.

My simulation results demonstrated that heteroggetieat arises due to
confounding between measured and unmeasured \exiaftén will not be a simple
location-scale form. In this situation, weightegdnmession quantile estimates and

rankscore tests require estimating weights thabased on changes in a local interval
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of quantiles around a specific quantile rather thlabally applied across all quantiles.

| used a minor modification of bandwidth estimatpocedures developed by Hall and
Sheather (1988) as extended to regression quabyilésenker and Machado (1999).
Although adequate, there clearly is room for imgroent in these procedures,
including automating their computation in the nseeg software.

My use ofAAIC, for model selection with the bivalve data wasadtempt to
extend Hurvich and Tsai (1990) procedures for nreckgression (0.5 quantile) to
other quantiles. The fact that some laagdC . between models at high and low
guantiles were associated with sampling distrim#iof parameter estimates that did
not differ from zero was a little disconcertinghi§ may reflect a failure of this
extension of AIC , that the sampling distributionestimates is not well represented in
information criteria like AIC , or that | extendedtenates and inferences too far into
the extreme quantiles for them to be reliable. hao (1993) discussed extension of
Schwarz information criterion (SIC) to robitestimates, including median
regression, for linear models. Additional reseanstapplication of information criteria
to regression quantile model selection is cleadyranted.

Use of cubic polynomials of location coordinategstimate spatial trend
surfaces provided a reasonable method for modklnggr scale spatial gradients of
responses (Legendre et al. 1997) that are of mtesest for models generalizing
animal responses to habitat. Spatial trend susfpo®vided an indication of spatial
variation in organism response which would sugg#stts of some relevant ecological

processes (Legendre et al. 1997) and provided laoahédr accounting for some of the
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variation due to unmeasured processes that wetialgpstructured. However, it is
important to remember that gradients in space ofbegcological interpretation per se
(Legendre et al. 1997). ltis in fact possiblelébeat the entire purpose of developing
general habitat relationships by over reliance odeling spatial structure. Consider
the models oMacomona>15 mm as a function of bed elevation and spatracture.
There was more variation in largacomonaabundance explained by the spatial trend
surface alone than by the nonlinear bed elevatiodein A parsimonious model that
explained most variation with fewest parametersld/be the cubic spatial trend
surface model. Yet, this model of bivalve courdsdd on spatial gradients on one
sandflat has little chance of generalizing to otbeations because it includes no
information on ecological processes. The cubitiagimend does suggest that spatially
structured processes are operating within the stdlee sampled 250 m x 500 m area
(Legendre et al. 1997). There is greater potefarageneralizing the bed elevation
relationship to other locations to the extent thed elevation is related to
hydrodynamic processes affecting settlement, fggdind survival of bivalves.

An extreme form of spatial modeling that defeaesdknerality desired in most
habitat models is including indicator variablesddferent geographic locations. This
model structure allows for different relationshvpigh the habitat covariates for every
geographic location, i.e., unequal slopes andaetgs in a separate regression model.
This might be justified based on statistical meastior regression model selection, fit,
or hypothesis testing. Yet, separate relationsioippsach geographic location would

seem to completely defeat our desire for develogergeral relationships in ecology.
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With quantile regression, it is possible to haviéedent geographic locations associated
with different quantiles of one common model, ebynham et al. 2002. The
difference from a statistical standpoint is whetioeeassume one common probability
model with different locations (contexts) assodatgth different portions of the
probability distribution (quantiles), or whetherassume separate probability models
associated with each location. A desire to gerzeré other places and times with
habitat relationship models suggests that the campnabability model might be more
informative.
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Appendix 4
Appendix 4.1.

TheRY(r) coefficient of determination was the proporti@negduction in the objective
function minimized when passing from a constraipachmeter quantile regression
model to some unconstrained parameter model (KeemdceMachado 1999). My

implementation ofR'(t) = 1- SARt)/SARr)) used

n
SARr) = min[z p.(y, - Xo/ibo)] for the reduced parameter model constrained tajust
i=1

n
constant and use§ARr) = min[Z p.(Y, - Xi/b)] for the unconstrained full pat@me
i=1

model. This coefficient of determination was idealtto the one used by Cade and
Richards (1996) whet= 0.50.

The AIC, ) = -2I(t) + 2p(n/(n - p - 1)), wherd(t) was the log-likelihood for the
1th regression quantile apdvas the number of parameters in the model (Hurarah
Tsai 1990). The likelihood used in the regressjoantile AlG ) assumed a double
exponential distribution with density functidste) = t(1 - t)exp[».(€)/c]/c and
variances?, wherep. (€) = et - (e < 0)) was the check function used in minimizing the
asymmetrically weighted sum of absolute deviations for regression quakblesker
and Machado 1999). The log-likelihot{d) = nin(t(1 - 1)) -ninc - ¢ [np.(e)] and -2(x)

with SAKt)/n as an estimate of plugged in reduced torkh(z(1 - 1)) +
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2nin(SAF()/n) + 2n, whereSAHT) was the weighted sum of absolute deviations
minimized for therth regression quantile estimate as above (Hurvich and Tsai 1990).
In my implementation of AICt) to compare among models by quantjléeliminated

the terms -8In(z(1 - 7)) + 2n because they were constants for any specifaett, thus,
cancelled when computing differences in Al lfetween models by quantile

[AAIC (7)].

Limited simulation work by Hurvich and Tsai (1990) and McQuarrie and Tsai
(1998) indicated that model selection based on AIC for the 0.50 regression quantile
was insensitive to occurrence of other error distributions than the double exponential
assumed by the likelihood computations. Likelihoods for quantile regression for
distributions other than the double exponential involve the multiplicative term
o(t)/[t(1 - 1)s(1)], wheres(t) = 1F(F (1)) is the quantile density function (Koenker and
Machado 1999). Since these terms would be constants in the likelihoods when
comparing models using AlG)(that assumed a common error distribution other than
the double exponential, they would be irrelevant to the computed differences
(AAIC (1)). The small sample, parameter penalty term in,A)CX(n/(n - p - 1)), was
based on normal distribution assumptions for least squares regression. Hurvich and
Tsai (1990) and McQuarrie and Tsai (1998) found that more complex penalty terms
suited for least absolute deviation regression and double exponential error distributions

did not yield improved performance over the simpler term in AIC .
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Appendix 4.2.

An example of computations for the quantile interval weights based on a modification
of the method proposed by Koenker and Machado (1999) is provided for the 0.90
quantile for the model including bed elevation and bed elevation . The Hall and
Sheather (1988) bandwidth rule assuming a normal distribution (for convenience) is
h(t) = Nz #J1.50 {® {1))/2(®@ 1)) 2+ 1)] **® wherez, satisfiesd(z) = 1 -0/2, ® is the

cdf andg is the pdf of the standard normal distribution; and for the 0.90 quantile,

0.10, anch = 200 yielded a recommended bandwidthh¢®.90) = 0.05264. The
estimatedy(t), b,(t), andb(t) were obtained for all quantiles in the interval 0.90 +
h(0.90)e [0.84736, 0.95264]. This interval contained 22 regression quantile estimates,
and the average pairwise difference between them was 81.00§8fp56.5343 for

b,(t), and 9.98316 fdb,(t). Plots ofb,(t) andbt) byt were examined to determine

the sign of the rates of change to assign to the estimated difference ausffi¢ier

this quantile the weights wevg0.90) = (2 x 0.05264)/(81.0031 - 56.5343 x bed
elevation + 9.9832 x bed elevatfon ). Plots of the weights as a function of bed elevation
were examined to check for any negative weights; none occurragd®0). When
negative weights were encountered a small constant was added to the denominator of
the function to shift them all to positive values while preserving their relative val

The weights were then multiplied Macomona>15 mm countsyf, bed elevationX,)

and bed elevatidnXf) to estimate the 0.90 quantile regression for the me(eb0y
=w(0.90) +w(0.90)X,; + w(0.90)X, and to compute confidence intervals based on

inverting the quantile rankscore tests.
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